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Introductory remarks

The theory of ordinary differential equations is a fundamental instrument of

continuous mathematics, in which the central objects of study are functions

involving real numbers. It is not immediately apparent that this theory has

anything useful to say about discrete mathematics in general, or number theory

in particular.

In this book we consider ordinary differential equations in which the role of

the real numbers is instead played by the field of 𝑝-adic numbers, for some prime

number 𝑝. The 𝑝-adics form a number system with enough formal similarities to

the real numbers to permit meaningful analogues of notions from calculus, such

as continuity and differentiability. However, the 𝑝-adics incorporate data from

arithmetic in a fundamental way; two numbers are 𝑝-adically close together if

their difference is divisible by a large power of 𝑝.

In this chapter, we first survey some ways in which 𝑝-adic differential equa-

tions appear in number theory. We then focus on an example of Dwork, in which

the 𝑝-adic behavior of Gauss’s hypergeometric differential equation relates to

the manifestly number-theoretic topic of the number of points on an elliptic

curve over a finite field.

Since this chapter is meant only as an introduction, it is full of statements for

which we give references instead of proofs. This practice is not typical of the

rest of this book, except for the forward-looking discussions in the appendices.

On a related note, the reader new to 𝑝-adic numbers should postpone this

chapter’s exercises until after reading Part I.

0.1 Why 𝑝-adic differential equations?

Although the very existence of a highly developed theory of 𝑝-adic ordinary

differential equations is not entirely well known even within number theory,
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2 Introductory remarks

the subject is actually almost 50 years old. Here are some circumstances, past

and present, in which it arises; some of these will be taken up again in the

appendices.

Variation of zeta functions (see Appendix A). The original circumstance in

which 𝑝-adic differential equations appeared in number theory was Dwork’s

work on the variation of zeta functions of algebraic varieties over finite fields.

Roughly speaking, solving certain 𝑝-adic differential equations can give rise to

explicit formulas for number of points on varieties over finite fields.

In contrast to methods involving étale cohomology, methods for studying

zeta functions based on 𝑝-adic analysis (including 𝑝-adic cohomology) lend

themselves well to numerical computation. Interest in computing zeta func-

tions for varieties for which direct point-counting is not an option (e.g., curves

over tremendously large finite fields) has been driven by applications in com-

puter science, the principal example being cryptography based on elliptic or

hyperelliptic curves.

𝑝-adic cohomology (see Appendix B). Dwork’s work suggested, but did not

immediately lead to, a proper analogue of étale cohomology based on 𝑝-adic

analytic techniques. Such an analogue was eventually developed by Berthelot

by synthesizing work of Monsky and Washnitzer with ideas of Grothendieck);

it is called rigid cohomology (see the chapter notes for the origin of the term

“rigid”). The development of rigid cohomology has lagged somewhat behind

that of étale cohomology, partly due to the emergence of some thorny problems

related to the construction of a good category of coefficients. These problems,

which have only recently been resolved, are rather closely related to questions

concerning 𝑝-adic differential equations; in fact, some of the results presented

in this book have been used to address these problems.

𝑝-adic Hodge theory (see Appendix C). The subject of 𝑝-adic Hodge theory

aims to do for the cohomology of varieties over 𝑝-adic fields what ordinary

Hodge theory does for the cohomology of varieties over C: namely, to provide

a better understanding of the cohomology of a variety in its own right, inde-

pendently of the geometry of the variety. In the 𝑝-adic case, the cohomology

in question is often étale cohomology, which carries the structure of a Galois

representation.

The study of such representations, as pioneered by Fontaine, involves a

number of exotic auxiliary rings (rings of 𝑝-adic periods) which serve their

intended purposes but are otherwise a bit mysterious. More recently, the work

of Berger has connected much of the theory to the study of 𝑝-adic differential

equations; notably, a key result that was originally intended for use in 𝑝-

adic cohomology (the 𝑝-adic local monodromy theorem) turned out to imply
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0.2 Zeta functions of varieties 3

an important conjecture of Fontaine on the potential semistability of Galois

representations.

Ramification theory (see Chapter 19). There are some interesting analogies

between properties of differential equations overCwith meromorphic singular-

ities and properties of wildly ramified Galois representations of 𝑝-adic fields.

At some level, this is suggested by the parallel formulation of the Langlands

conjectures in the number field and function field cases. One can use 𝑝-adic

differential equations to interpolate between the two situations, by associat-

ing differential equations to Galois representations (as in the previous item)

and then using differential invariants (such as irregularity) to recover Galois

invariants (such as Artin and Swan conductors).

For representations of the étale fundamental group of a variety over a field

of positive characteristic of dimension greater than 1, it is difficult to construct

meaningful Galois-theoretic numerical invariants. Recent work of Abbes and

Saito [1, 2] provides satisfactory definitions, but the resulting quantities are quite

difficult to calculate. One can alternatively use 𝑝-adic differential equations to

define invariants which can be somewhat easier to deal with; for instance, one

can define a differential Swan conductor which is guaranteed to be an integer

[238], whereas this is not clear for the Abbes–Saito conductor. One can then

equate the two conductors, deducing integrality for the Abbes–Saito conductor;

this has been carried out by Chiarellotto and Pulita [86] for one-dimensional

representations, and by L. Xiao [411] in the general case.

0.2 Zeta functions of varieties

For the rest of this introduction, we return to Dwork’s original example showing

the role of 𝑝-adic differential equations and their solutions in number theory.

This example refers to elliptic curves, for which see Silverman’s book [373] for

background.

Definition 0.2.1. For 𝜆 in some field 𝐾 , let 𝐸𝜆 be the elliptic curve over 𝐾

defined by the equation

𝐸𝜆 : 𝑦2
= 𝑥(𝑥 − 1) (𝑥 − 𝜆)

in the projective plane. Remember that there is one point 𝑂 = [0 : 1 : 0] at

infinity. There is a natural commutative group law on 𝐸𝜆 (𝐾) with identity

element 𝑂, characterized by the property that three points add to zero if and

only if they are collinear. (It is better to say that three points add to zero if

they are the three intersections of 𝐸𝜆 with some line, as this correctly permits
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4 Introductory remarks

degenerate cases. For instance, if two of the points coincide, the line must be

the tangent to 𝐸𝜆 at that point.)

For elliptic curves over finite fields, one has the following result of Hasse,

which generalizes some observations made by Gauss and others.

Theorem 0.2.2 (Hasse). Suppose 𝜆 belongs to a finite field F𝑞 . If we write

#𝐸𝜆 (F𝑞) = 𝑞 + 1 − 𝑎𝑞 (𝜆), then |𝑎𝑞 (𝜆) | ≤ 2
√
𝑞.

Proof See [373, Theorem V.1.1]. �

Hasse’s theorem was later vastly generalized as follows, originally as a set

of conjectures by Weil. (Despite no longer being conjectural, these are still

commonly referred to as the Weil conjectures.)

Definition 0.2.3. For 𝑋 an algebraic variety over F𝑞 , the zeta function of 𝑋 is

defined as the formal power series

𝜁𝑋 (𝑇) = exp

( ∞
∑

𝑛=1

𝑇𝑛

𝑛
#𝑋 (F𝑞𝑛 )

)

;

another way to write it, which makes it look like more familiar examples of

zeta functions, is

𝜁𝑋 (𝑇) =
∏

𝑥

(1 − 𝑇deg(𝑥) )−1,

where 𝑥 runs over Galois orbits of 𝑋 (F𝑞), and deg(𝑥) denote the size of the

orbit 𝑥. (If you prefer algebro-geometric terminology, you may run 𝑥 over closed

points of the scheme 𝑋 , in which case deg(𝑥) denotes the degree of the residue

field of 𝑥 over F𝑞 .)

Example 0.2.4. For 𝑋 = 𝐸𝜆, one can verify that

𝜁𝑋 (𝑇) =
1 − 𝑎𝑞 (𝜆)𝑇 + 𝑞𝑇2

(1 − 𝑇) (1 − 𝑞𝑇)
using properties of the Tate module of 𝐸𝜆; see [373, Theorem V.2.2].

The statement of the Weil conjectures is the following theorem.

Theorem 0.2.5 (Dwork, Grothendieck, Deligne, et al). Let 𝑋 be an algebraic

variety over F𝑞 . Then 𝜁𝑋 (𝑇) represents a rational function of 𝑇 . Moreover, if

𝑋 is smooth and proper of dimension 𝑑, we can write

𝜁𝑋 (𝑇) =
𝑃1 (𝑇) · · · 𝑃2𝑑−1 (𝑇)
𝑃0 (𝑇) · · · 𝑃2𝑑 (𝑇)

,
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0.3 Zeta functions and 𝑝-adic differential equations 5

where each 𝑃𝑖 (𝑇) has integer coefficients, satisfies 𝑃𝑖 (0) = 1, and has all roots

in C on the circle |𝑇 | = 𝑞−𝑖/2.

Proof The proof of this theorem is a sufficiently massive undertaking that

even a reference is not reasonable here; instead, we give [196, Appendix C]

as a metareference. (Another useful exposition is [330]; see also the chapter

notes.) �

Remark 0.2.6. It is worth pointing out that the first complete proof of Theo-

rem 0.2.5 used the fact that for any prime ℓ ≠ 𝑝, one has

#𝑋 (F𝑞𝑛 ) =
∑

𝑖

(−1)𝑖 Trace(𝐹𝑛, 𝐻𝑖
et (𝑋,Qℓ)),

where 𝐻𝑖
et (𝑋,Qℓ) is the 𝑖-th étale cohomology group of 𝑋 (or rather, the base

change of 𝑋 to F𝑞) with coefficients in Qℓ . This is an instance of the Lefschetz

trace formula in étale cohomology.

0.3 Zeta functions and 𝑝-adic differential equations

Remark 0.3.1. The interpretation of Theorem 0.2.5 in terms of étale coho-

mology (Remark 0.2.6) is all well and good, but there are several downsides.

One important one is that étale cohomology is not explicitly computable; for

instance, it is not straightforward to describe étale cohomology to a computer

well enough that the computer can make calculations. (The main problem is

that while one can write down étale cocycles, it is very hard to tell whether or

not any given cocycle is a coboundary.)

Another important downside is that étale cohomology does not yield good

information about what happens to 𝜁𝑋 when you vary 𝑋 . This is where 𝑝-adic

differential equations enter the picture. It was observed by Dwork that when

you have a family of algebraic varieties defined over Q, the same differential

equations appear on one hand when you study variation of complex periods,

and on the other hand when you study variation of zeta functions over F𝑝 .

Here is an explicit example due to Dwork.

Definition 0.3.2. Recall that the hypergeometric series

𝐹 (𝑎, 𝑏; 𝑐; 𝑧) =
∞
∑

𝑖=0

𝑎(𝑎 + 1) · · · (𝑎 + 𝑖 − 1)𝑏(𝑏 + 1) · · · (𝑏 + 𝑖 − 1)
𝑐(𝑐 + 1) · · · (𝑐 + 𝑖 − 1)𝑖! 𝑧𝑖

(0.3.2.1)
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6 Introductory remarks

satisfies the hypergeometric differential equation

𝑧(1 − 𝑧)𝑦′′ + (𝑐 − (𝑎 + 𝑏 + 1)𝑧)𝑦′ − 𝑎𝑏𝑦 = 0. (0.3.2.2)

Set

𝛼(𝑧) = 𝐹 (1/2, 1/2; 1; 𝑧).

Over C, 𝛼 is related to an elliptic integral, for instance, by the formula

𝛼(𝜆) = 2

𝜋

∫ 𝜋/2

0

𝑑𝜃
√

1 − 𝜆 sin2 𝜃
(0 < 𝜆 < 1).

(One can extend this formula to complex 𝜆, but this requires some care with

branch cuts.) This elliptic integral can be viewed as a period integral for the

curve 𝐸𝜆, i.e., one is integrating some meromorphic differential form on 𝐸𝜆

around some loop (or more properly, around some homology class).

Let 𝑝 be an odd prime. We now try to interpret 𝛼(𝑧) as a function of a 𝑝-adic

variable rather than a complex variable. Beware that this means that 𝑧 can take

any value in a field with a norm extending the 𝑝-adic norm on Q, not just Q𝑝

itself. (For the moment, you can imagine 𝑧 running over a completed algebraic

closure of Q𝑝 .)

Lemma 0.3.3. The series 𝛼(𝑧) converges 𝑝-adically for |𝑧 | < 1.

Proof Exercise. �

Dwork discovered that a closely related function admits a sort of analytic

continuation.

Definition 0.3.4. Define the Igusa polynomial

𝐻 (𝑧) =
(𝑝−1)/2
∑

𝑖=0

(

(𝑝 − 1)/2
𝑖

)2

𝑧𝑖 .

Modulo 𝑝, the roots of 𝐻 (𝑧) are the values of 𝜆 ∈ F𝑝 for which 𝐸𝜆 is a super-

singular elliptic curve, i.e., for which 𝑎𝑞 (𝜆) ≡ 0 (mod 𝑝). (In fact, the roots

of 𝐻 (𝑧) all belong to F𝑝2 , by a theorem of Deuring; see [373, Theorem V.3.1].)

Dwork’s analytic continuation result is the following.

Theorem 0.3.5 (Dwork). There exists a series 𝜉 (𝑧) = ∑∞
𝑖=0 𝑃𝑖 (𝑧)/𝐻 (𝑧)𝑖 , with

each 𝑃𝑖 (𝑧) ∈ Q𝑝 [𝑧], converging uniformly for those 𝑧 satisfying |𝑧 | ≤ 1 and

|𝐻 (𝑧) | = 1 and such that

𝜉 (𝑧) = (−1) (𝑝−1)/2 𝛼(𝑧)
𝛼(𝑧𝑝) ( |𝑧 | < 1).
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0.4 A word of caution 7

Proof See [402, §7]. �

Remark 0.3.6. Note that 𝜉 itself satisfies a differential equation derived from

the hypergeometric equation. We will see such equations again once we intro-

duce the notion of a Frobenius structure on a differential equation, in Chapter 17.

In terms of the function 𝜉, we can compute zeta functions in the Legendre

family as follows.

Definition 0.3.7. Let Z𝑞 be the unique unramified extension of Z𝑝 with residue

field F𝑞 . For 𝜆 ∈ F𝑞 , let [𝜆] be the unique 𝑞-th root of 1 in Z𝑞 congruent to 𝜆

mod 𝑝. (See the notes for Chapter 14 for more discussion of this construction.)

Theorem 0.3.8 (Dwork). If 𝑞 = 𝑝𝑎 and 𝜆 ∈ F𝑞 is not a root of 𝐻 (𝑧), then

𝑇2 − 𝑎𝑞 (𝜆)𝑇 + 𝑞 = (𝑇 − 𝑢) (𝑇 − 𝑞/𝑢),

where

𝑢 = 𝜉 ( [𝜆])𝜉 ( [𝜆] 𝑝) · · · 𝜉 ( [𝜆] 𝑝𝑎−1 ).

That is, the quantity 𝑢 is the “unit root” (meaning the root of valuation 0) of

the polynomial 𝑇2 − 𝑎𝑞 (𝜆)𝑇 + 𝑞 occurring (up to reversal) in the zeta function.

Proof See [402, §7]. �

0.4 A word of caution

Example 0.4.1. Before we embark on the study of 𝑝-adic ordinary differential

equations, a cautionary note is in order, concerning the rather innocuous-

looking differential equation 𝑦′ = 𝑦. Over R or C, this equation is nonsingular

everywhere, and its solutions 𝑦 = 𝑐e𝑥 are defined everywhere.

Over a 𝑝-adic field, things are quite different. As a power series around 𝑥 = 0,

𝑦 = 𝑐

∞
∑

𝑛=0

𝑥𝑛

𝑛!

and the denominators hurt us rather than helping. In fact, the series only con-

verges for |𝑥 | < 𝑝−1/(𝑝−1) (assuming that we are normalizing in such a way

that |𝑝 | = 𝑝−1). For comparison, note that the logarithm series

log
1

1 − 𝑥
=

∞
∑

𝑛=1

𝑥𝑛

𝑛

converges for |𝑥 | < 1.
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8 Introductory remarks

Remark 0.4.2. The conclusion to be taken away from the previous example

is that there is no fundamental theorem of ordinary differential equations over

the 𝑝-adics! In fact, the hypergeometric differential equation in the previous

example was somewhat special; the fact that it had a solution in a disc where

it had no singularities was not a foregone conclusion. One of Dwork’s discov-

eries is that this typically happens for differential equations that “come from

geometry”, such as Picard–Fuchs equations which arise from integrals of alge-

braic functions (e.g., elliptic integrals). Another of Dwork’s discoveries is that

one can quantify the obstruction to solving a 𝑝-adic differential equation in a

nonsingular disc, using similar techniques to those used to study obstructions

to solving complex differential equations in singular discs. We will carry this

out later in the book.

Notes

For detailed notes on the topics discussed in §0.1, see the notes for the chapters

referenced.

We again mention [196, Appendix C] and [330] as starting points for further

reading about the Weil conjectures. See also [261].

The notion of an analytic function in terms of a uniform limit of rational

functions with poles prescribed to certain regions is the original such notion,

introduced by Krasner. For this book, we will restrict our consideration of 𝑝-adic

analysis to working with complete rings in this fashion, without attempting to

introduce any notion of nonarchimedean analytic geometry. However, it must

be noted that it is much better in the long run to work in terms of analytic

geometry; for example, it is pretty hopeless to deal with partial differential

equations without doing so.

That said, there are several ways to develop a theory of analytic spaces over a

nonarchimedean field. The traditional method is Tate’s theory of rigid analytic

spaces, so-called because one develops everything “rigidly” by imitating the

theory of schemes in algebraic geometry, but using rings of convergent power

series instead of polynomials. The canonical foundational reference for rigid

geometry is the book of Bosch, Güntzer, and Remmert [69], but novices may

find the text of Fresnel and van der Put [171] or the lecture notes of Bosch [68]

more approachable. Two more recent methods, which in some ways are more

robust, is Berkovich’s theory of nonarchimedean analytic spaces (commonly

called Berkovich spaces), as introduced in [52] and further developed in [53];

and Huber’s theory of adic spaces, as introduced in [211] and further developed
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in [212]. For all three points of view, see also the lecture notes of Conrad [111].

The Berkovich approach will manifest at a very superficial level in Part VII.

Dwork’s original analysis of the Legendre family of elliptic curves via the

associated hypergeometric equation (which expands upon earlier work of Tate)

appears in [140, §8]. The treatment in [402] is more overtly related to 𝑝-adic

cohomology.

The family of hypergeometric equations with 𝑎, 𝑏, 𝑐 ∈ Q∩Z𝑝 is rich enough

that one could devote an entire book to the study of its 𝑝-adic properties. Indeed,

Dwork did exactly this; the result is [145].

It is possible to resurrect partially the fundamental theorem of ordinary differ-

ential equations in the 𝑝-adic setting. The best possible results in that direction

seem to be those of Priess-Crampe and Ribenboim [341]. One consequence of

their work is that a differential equation over Q𝑝 has a solution if and only if it

has a sufficiently good approximate solution; this amounts to a differential ver-

sion of Hensel’s lemma. We too will need noncommutative forms of Hensel’s

lemma; see Theorem 2.2.2.

Christol [92] has given an interesting retrospective on some of the key

ideas of Dwork, including generic points, the transfer principle, and Frobenius

structures, which resonate throughout this book.

Exercises

0.1 Prove directly from the definition that the series 𝐹 (𝑎, 𝑏; 𝑐; 𝑧) converges

𝑝-adically for |𝑧 | < 1 whenever 𝑎, 𝑏, 𝑐 are rational numbers with de-

nominators not divisible by 𝑝. This implies Lemma 0.3.3.

0.2 Using the fact that 𝛼(𝑧) satisfies the hypergeometric equation, write

down a nontrivial differential equation with coefficients inQ(𝑧) satisfied

by the function 𝜉 (𝑧).
0.3 Check that the usual formula

lim inf
𝑛→∞

|𝑎𝑛 |−1/𝑛

for the radius of convergence of the power series
∑∞

𝑛=0 𝑎𝑛𝑧
𝑛 still works

over a nonarchimedean field. That is, the series converges when |𝑧 | is

less than this radius and diverges when |𝑧 | is greater than this radius.

0.4 Show that in the previous exercise, just like in the archimedean case, a

power series over a nonarchimedean field can either converge or diverge

at a value of 𝑧 for which |𝑧 | equals the radius of convergence.

0.5 Check that (as claimed in Example 0.4.1) under the normalization
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10 Introductory remarks

|𝑝 | = 𝑝−1, the exponential series exp(𝑧) over Q𝑝 has radius of con-

vergence 𝑝−1/(𝑝−1) , while the logarithm series log(1 − 𝑧) has radius of

convergence 1.

0.6 Show that over Q𝑝 , a power series in 𝑧 which converges for |𝑧 | ≤ 1 may

have an antiderivative which only converges for |𝑧 | < 1, but its derivative

still converges for |𝑧 | ≤ 1. This is the reverse of what happens over an

archimedean field.
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