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PART I

CONCEPTS FROM MODELING,
INFERENCE, AND COMPUTING
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1 Probabilistic Modeling and Inference

By the end of this chapter, we will have presented

• Data oriented modeling
• Random variables and their properties
• An overview of inverse problem solving

1.1 Modeling with Data

If experimental observations or, put concretely, binaries on a screen were

all we ever cared about, then no experiment would require modeling or

interpretation and the remainder of this book would be unnecessary. But

binaries on a screen do not constitute knowledge. They constitute data.

Put differently, quantum mechanics, like any scientific knowledge, is not

self-evident from the pixelated outcome on a camera chip of a modern

incarnation of a Young’s two-slit interference experiment.

In the natural sciences,models of physical systems provide mathematical

frameworks from which we unify disparate pieces of information. These

include conceptual notions such as symmetries, fundamental constituents,

and other postulates, as well as scientific measurements and, even more

generally, empirical observations of any form. If we think of direct obser-

vations as data in particular, at least for now, we can think of mathematical

models as a way of compressing or summarizing these data.

Data summaries may be used to make predictions about physical con-

ditions we may encounter in the future, such as in new experiments, or to

interpret and describe an underlying physical system already probed in past

experiments. For example, with time-ordered data we may be interested

in learning equations of motion or kinetic schemes. Or, already knowing

a kinetic scheme sufficiently well from past experiments or fundamental

postulates, we may only be interested in learning the noise characteristics

of a new piece of equipment on which future experiments will be run.

Thus, models may be aimed at discovering new science as well as at devising

careful controls to get a better handle on error bars and, more broadly, even

at designing new experiments altogether.
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4 Probabilistic Modeling and Inference

1.1.1 Why DoWe Obtain Models from Raw Data?

Experimental data rarely provide direct insight into the physical conditions

and systems of interest. At the very least, measurements are corrupted by

unavoidable noise and, as a result, models obtained from experimental

data are unavoidably probabilistic. So, we ask:How should we, the scientific

community, go about obtaining models from imperfect data?

Note 1.1 Obtaining models from data

Data can be time and labor intensive to acquire. Perhaps more importantly,

every datum in a dataset encodes information. In light of this, we re-pitch

our question and ask: How should we go about obtaining models efficiently

and without compromising the information encoded in the data?

The key is to start from data acquired in experiments and arrive at

models with a minimal amount of data preprocessing, if at all. This

is because obtaining a model from quantities derived from the data, as

opposed to directly from the data, is necessarily equal to or worse than

obtaining the model from the data directly since derived quantities contain

asmuch as or less information than the data themselves. For instance, fitting

histogrammed data is an information-inefficient and unreliable approach to

obtainingmodels as it demands downsampling via binning and an arbitrary

choice of bin sizes.

Besides information efficiency, obtaining models from unprocessed data

also has another critical advantage that gets to the heart of scientific

practice.While error bars around individual data points may be imperfectly

known, they are, by construction, better characterized than error bars

around derived quantities. Thus error bars aroundmodels determined from

derived quantities are necessarily only as good as, but often less reliable,

than error bars around models determined from the raw data. Unfortu-

nately, as error bars around derived quantities can become too difficult

to compute in practice, they are often ignored altogether. Nevertheless,

error bars are a cornerstone of modern scientific research. They not only

help quantify reproducibility but also directly inform error bars around the

models obtained and, as such, inspire the formulation of new competing

models.

Putting it all together, it becomes clear that a model is best informed,

and has the most reliable error bars, when learned from the data

available in as raw a form as accessible from the experiments. This is true

so long as it is computationally feasible to obtain models from such raw

data and, as we will see in subsequent chapters, we are far from reaching

computational bottlenecks in most problems of interest across the natural

sciences.
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5 1.1 Modeling with Data

1.1.2 Why DoWe Formulate Models with Random Variables?

If there is no uncertainty involved, a physical system is adequately described

using deterministic variables. For example, Newtonian mechanics are

expressed in terms of momenta, positions, and forces. However, when

a system involves any degree of uncertainty, either due to noise, poor

characterization of some or all of its constituents, or features as of

yet unresolved or otherwise fundamentally stochastic, then it is better

described using random variables. This is true of the probabilistic nature

of quantum mechanics as well as statistical physics and, as we illustrate

herewith, also of data analysis.

Random variables are used to represent observations generated by

stochastic systems. Stochasticity in data analysis arises due to inherent

randomness in the physical phenomena of interest or due to measurement

noise or both. Random variables are useful constructs because, as we will

see, they are mathematical notions that reproduce naturally stochastic

relationships between uncertain effects and observations, while their

deterministic counterparts cannot.

Note 1.2 Measurement noise

It is sometimes thought that models with probabilistic formulations are only

required when the quantities of interest are inherently probabilistic. Never-

theless, measurement noise corrupts experimental observations irrespective

of whether the quantities themselves are probabilistic or not. Consequently,

probabilistic models are always required whenever models are informed by

experimental output.

Random variables are abstract notions that most often represent num-

bers or collections of numbers. However, more generally, random variables

can be generic notions that may include nonnumeric quantities such as:

labels for grouping data, e.g., groupA, group B; logical indicators, e.g., true,

false; functions, e.g., trajectories or energy potentials. In all cases, numeric

or not, random variables may be discrete, e.g., dice rolls, coin flips, photon

counts, bound energy states, or continuous, such as temperatures, pressures,

or distances. Further, random variables may be finite collections of individ-

ual quantities, e.g., measurements acquired during an experiment or infinite

quantities, e.g., successive positions on a Brownian particle’s trajectory. At

any rate, random variables have unique properties, which we will shortly

explore, that allow us to use them in the construction and evaluation of

meaningful probabilistic models.

Commonly, we imagine a random variable, which we denote with W ,

as being instantiated or assigned a specific value realized at w as a result

of performing a measurement that amounts to a stochastic event. That is,
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6 Probabilistic Modeling and Inference

we think of a measurement output w as a stochastic realization of W . Our

stochastic events entail randomness inherited through W and influencing

the assigned values w. We therefore distinguish between a random variable

W and its realizations, w, i.e., the particular values that W attains or

may attain.

Stochastic events may encompass physical events, like the occurrence of

chemical reactions or events in a cell’s life cycle. Stochastic events may also

encompass conceptual events, like an idealized version of a real-life system

expressed in terms of fair coin tosses or even like instantaneously learning

the spin orientation of a faraway particle given a local measurement of

another spin to which the first is entangled.

Example 1.1 The photoelectric effect

When a photon falls onto certain materials photoelectrons are sometimes

emitted. Such a phenomenon provides the basis for a stochastic event.

In the photoelectric setting, it is often convenient to formulate a random

variableW that counts the number of photoelectrons emitted. This random

variable may take values w = 0, 1, 2, . . ..

To develop a model, we imagine a prototype experiment as a sequence of

stochastic events that produce N distinct numeric measurements or, more

generally, observations of any kind. We typically use wn to denote the nth

observation and use n = 1, . . . ,N to index them. As we highlighted earlier,

individual observations in our experiment may be scalars, for example

wn = 20.1
◦C or wn = 0.74 µm

3 for typical measurements of room temper-

ature or an E. coli’s volume, respectively, or even nonnumeric, such as

wn = p.R83SfsX15 for descriptions of gene mutations. In general, we do

not require that each observation in our experiment be of the same type;

that is, w1 may be a temperature while w2 may be a volume.

As we will often do, we gather every observation conveniently together

in a list,

w1:N = {w1,w2, . . . ,wN },

and use subscripts 1 :N to indicate that the list w1:N gathers every single wn
with an index n ranging between 1 and N. Unless explicitly needed to help

draw attention to the subscript, for clarity we may sometimes suppress this

subscript and write simply w for the entire list.

As we have already mentioned, the observations w1:N are better

understood as realizations of appropriate random variables

W1:N = {W1,W2, . . . ,WN } that we use to formulate our model.

1.1.3 Why Do Our Models Have Parameters?

Models are mathematical formulations to which we associate parameters.

Both models and their associated parameters are specialized to particular
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7 1.1 Modeling with Data

systems, experiment types, and experimental setups. Assuming a model

structure encoded in W1:N and provided observed values w1:N , our main

objective in data analysis becomes the estimation of the model’s associated

parameters.

Example 1.2 Normal random variables

Themean of a sequence of identical random variablesWn is only probabilisti-

cally related to eachmeasured valuewn. For the simple example of a normally

distributed sequence Wn, what we call the model is the normal distribution,

often termed the Gaussian distribution. The associated parameters are the

mean μ and variance v = σ2, with standard deviation σ, that indicate the

center and spread, respectively, of the values w1:N . These are collectively

described by the list of model parameters θ = {μ, v}. As illustrated in Fig. 1.1,

and as we will see in detail in later chapters, θ can be estimated from w1:N .

In the Example 1.2, the Gaussian forms a simple model that contains

two parameters, namely the mean μ and the variance v, that we gather in

θ. More generally, our models may contain K individual parameters that

we may also gather in a list θ1:K = {θ1, θ2, . . . , θK }.
Typically, the parameters θ1:K represent quantities we care to estimate,

for example μ and v. A model is deemed specified when numerical values

are assigned to θ1:K . Thus, specifying a model is understood as being

equivalent to assigning values to θ1:K . Similarly, deriving error bars around

the assigned values of θ1:K is equivalent to deriving error bars around the

model.

As we invariably face some degree of measurement noise, we formulate

an experiment’s results w1:N as probabilistically related to the parameters

θ1:K . In the context of our prototype experiment, we incorporate such

relations through the random variables W1:N and in the next section we

lay down some necessary concepts.

n

w
n

2

Fig. 1.1 (Left) We show the output of an experiment after successive trials that we index with n.

(Right) We find a histogram of the data with very fine bin sizes that assumes the shape of a

Gaussian distribution. We denote the mean of this distribution by μ and the standard

deviation by σ.
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8 Probabilistic Modeling and Inference

Note 1.3 Modeling terminology

In this chapter, when we use the term model, we mean the mathematical

formulation itself alongside numerical values for its associated parameters.

When we speak of measurements, observations, assessments, or data points,

we refer to the random variablesW1:N and their realizations w1:N . Similarly,

by calibrating amodel we imply selecting the correct values for its associated

parameters (and sometime also characterizing their uncertainty). Determin-

ing both model parameters and their uncertainty is collectively referred to

as model estimation or model training.

1.2 Working with Random Variables

Before we embark on specific modeling and estimation strategies, we begin

by exploring some important notions that we need in order to work with

random variables and the distributions from which they are sampled. That

is, just as we can easily deduce derivatives and integrals of complicated

functions by remembering a few simple rules of calculus, we can similarly

deduce probability distributions of complicated models by remembering a

few simple rules of probability that we put forth in this section.

As we will soon start using random variables not only to represent

measurementsW , but also other relevant quantities of our model, we begin

using R to label generic random variables.

1.2.1 How to Assign Probability Distributions

In any model, a random variable R is drawn or sampled from some proba-

bility distribution. We label such a distribution with P and we write

R ∼ P.

In the language of statistics this reads “the random variable R is sampled

from the probability distribution P” or “R follows the statistics of P.”

In statistical notation, in writing R ∼ P, we use P as a notational short-

hand that summarizes the most important properties of the variable R.

These include a description of the values r that R may take and a recipe

to compute probabilities associated with them. As we will see, most often

we work with probability distributions that are associated with probability

density functions. In such cases, it is more convenient to think of R ∼ P

as a compact way of communicating: the allowed values r of R obey the

probability density p(r) associated with P.
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9 1.2 Working with Random Variables

Example 1.3 The normal distribution

We previously encountered the normal distribution, Normal(μ, v). A short-

hand like

R ∼ Normal
(

μ, v
)

captures the following pieces of information:

• The particular values r that R attains are real numbers ranging from

−∞ to +∞.
• The probability density p(r) of R depends on two parameters, μ and v, and

has the form

p(r) =
1
√
2πv

exp ��−
1

2

(r − μ)2

v

�� .
Furthermore, the two parameters μ and v can be interpreted as the mean and

the variance of R, respectively, since integration of the density leads to

(

Mean of R
)

=

∫

+∞

−∞
dr rp(r) = μ,

(

Variance of R
)

=

∫

+∞

−∞
dr (r − μ)2p(r) = v.

Using the density p(r), we can also compute the probability of measuring any

value r between some specified rmin and rmax. In particular, this is
∫ rmax

rmin

dr p(r) =
1

2

[
erf

(

rmax − μ√
2v

)

− erf

(

rmin − μ√
2v

)]
, (1.1)

where erf (·) is the error function defined by an integral

erf (r) =
2
√
π

∫ r

0

dr′ e−
1
2

(r′)2 .

Example 1.4 The exponential distribution

The exponential distribution arises in many applications. A shorthand like

R ∼ Exponential (λ)

captures the following pieces of information:

• The particular values r that R attains are real numbers ranging from

0 to∞.
• The probability density p(r) of R depends on one positive parameter, λ,

and has the form

p(r) = λe−λr.

The parameter λ can be interpreted as the reciprocal of the mean of R, since

integration of the density leads to

(

Mean of R
)

=

∫ ∞

0

dr rp(r) =
1

λ
.

www.cambridge.org/9781009098502
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-09850-2 — Data Modeling for the Sciences
Steve Pressé , Ioannis Sgouralis 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Probabilistic Modeling and Inference

Through the density p(r), we can also compute the probability of measuring

any value r between some specified rmin and rmax. In particular, this is
∫ rmax

rmin

dr p(r) = e−λrmin − e−λrmax . (1.2)

Example 1.5 Themultivariate NormalM distribution

The multivariate NormalM distribution is a generalization of the univariate

Normal of Example 1.3. In fact, the two definitions coincide forM = 1. The

shorthand

R ∼ NormalM
(

µ,V
)

captures the following pieces of information:

• The particular values r that R attains are real vectors of sizeM.

• The probability density p(r) of R depends on two parameters, µ andV, and

has the form

p(r) =
1

√

(2π)M |V |
exp

(

−1
2

(r − µ)V−1(r − µ)T
)

.

The parameter µ is also a vector of sizeM and the parameter V is a positive

definite square matrix of sizeM. Here, | · | is the matrix determinant. Similar

to the univariate case, the two parameters µ and V can be interpreted as the

mean and the covariance of R, respectively.

In the simplest case, a normally distributed bivariate random variable

R = (R1,R2) may be written as

(R1,R2) ∼ Normal2

(

(μ1, μ2),

(

v1 ρ
√
v1v2

ρ
√
v1v2 v2

))

.

In this parametrization μ1, μ2, v1, v2, ρ are scalars, v1, v2 are positive, and ρ

is bounded between −1 and +1. In this case, the density takes the equivalent

form

p(r1, r2) =
1

2π
√

v1v2(1 − ρ2)

× exp ��−
1

2(1 −ρ2)
��

(r1 −μ1)2

v1
+

(r2 −μ2)2

v2
− 2ρ

(r1 −μ1)(r2 −μ2)
√
v1v2

���� .

Throughout this book, we extensively use several common distributions.

In Examples 1.3 and 1.4 we introduced two of them, though many more

are to come. As these will appear frequently, to refer back to them we

adopt a convention that we summarize in Appendix B. Briefly, we use

R∼Normal(μ, v) and Normal(μ, v) to denote a normal random

variable and the normal distribution, respectively. Furthermore, we

use Normal(r; μ, v) to help distinguish this associated density with its

distribution. According to our convention, the values r of the random
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