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Data-Driven Science and Engineering

Data-driven discovery is revolutionizing how we model, predict, and control complex

systems. Now with Python and MATLAB�, this textbook trains mathematical scientists

and engineers for the next generation of scientific discovery by offering a broad overview of

the growing intersection of data-driven methods, machine learning, applied optimization,

and the classic fields of engineering mathematics and mathematical physics. With a

focus on integrating dynamical systems modeling and control with modern methods in

applied machine learning, this text includes methods that were chosen for their relevance,

simplicity, and generality. Topics range from introductory to research-level material,

making it accessible to advanced undergraduate and beginning graduate students from

the engineering and physical sciences. This second edition features new chapters on

reinforcement learning and physics-informed machine learning, significant new sections

throughout, and chapter exercises. Online supplementary material – including lecture

videos per section, homework, data, and codes in MATLAB�, Python, and R – is available

on http://databookuw.com.
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“Finally, a book that introduces data science in a context that will make any mechanical

engineer feel comfortable. Data science is the new calculus, and no engineer should grad-

uate without a thorough understanding of the topic”

Hod Lipson, Columbia University

“This book is a must-have for anyone interested in data-driven modeling and simulations.

Readers as diverse as undergraduate STEM students and seasoned researchers would find

it useful as a guide to this rapidly evolving field. Topics covered by the monograph include

dimension reduction, machine learning, and robust control of dynamical systems with

uncertain/random inputs. Every chapter contains codes and homework problems, which

make this treatise ideal for the classroom setting. The book is supplemented with online

lectures, which are not only educational but also entertaining to watch.”

Daniel M. Tartakovsky, Stanford University

“Engineering principles will always be based on physics, and the models that underpin

engineering will be derived from these physical laws. But, in the future, models based on

relationships in large datasets will be as important and, when used alongside physics-based

models, will lead to new insights and designs. Brunton and Kutz will equip students and

practitioners with the tools they will need for this exciting future.”

Greg Hyslop, Boeing

“Brunton and Kutz’s book is fast becoming an indispensable resource for machine learn-

ing and data-driven learning in science and engineering. The second edition adds several

timely topics in this lively field, including reinforcement learning and physics-informed

machine learning. The text balances theoretical foundations and concrete examples with

code, making it accessible and practical for students and practitioners alike.”

Tim Colonius, California Institute of Technology

“This is a must-read for those who are interested in understanding what machine learning

can do for dynamical systems! Steve and Nathan have done an excellent job in bringing

everyone up to speed with the modern application of machine learning to these complex

dynamical systems.”

Shirley Ho, Flatiron Institute and New York University
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Preface

This book is about the growing intersection of data-driven methods, machine learning,

applied optimization, and the classical fields of engineering mathematics and mathematical

physics. We developed this material over a number of years, primarily to educate our

advanced undergraduate and beginning graduate students from engineering and physical

science departments. Typically, such students have backgrounds in linear algebra, differ-

ential equations, and scientific computing, with engineers often having some exposure to

control theory and/or partial differential equations. However, most undergraduate curricula

in engineering and science fields have little or no exposure to data methods and/or opti-

mization. Likewise, computer scientists and statisticians have little exposure to dynamical

systems and control. Our goal is to provide a broad entry point to applied machine learning

for both of these groups of students. We have chosen the methods discussed in this book

for their (1) relevance, (2) simplicity, and (3) generality, and we have attempted to present

a range of topics, from basic introductory material up to research-level techniques.

Data-driven discovery is currently revolutionizing how we model, predict, and control

complex systems. The most pressing scientific and engineering problems of the modern era

are not amenable to empirical models or derivations based on first principles. Increasingly,

researchers are turning to data-driven approaches for a diverse range of complex systems,

such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy.

These systems are typically nonlinear, dynamic, multi-scale in space and time, and high-

dimensional, with dominant underlying patterns that should be characterized and modeled

for the eventual goal of sensing, prediction, estimation, and control. With modern math-

ematical methods, enabled by the unprecedented availability of data and computational

resources, we are now able to tackle previously unattainable problems. A small handful of

these new techniques include robust image reconstruction from sparse and noisy random

pixel measurements, turbulence control with machine learning, optimal sensor and actuator

placement, discovering interpretable nonlinear dynamical systems purely from data, and

reduced-order models to accelerate the optimization and control of systems with complex

multi-scale physics.

Driving modern data science is the availability of vast and increasing quantities of data,

enabled by remarkable innovations in low-cost sensors, orders-of-magnitude increases in

computational power, and virtually unlimited data storage and transfer capabilities. Such

vast quantities of data are affording engineers and scientists across all disciplines new

opportunities for data-driven discovery, which has been referred to as the fourth para-

digm of scientific discovery [325]. This fourth paradigm is the natural culmination of the

ix
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x Preface

first three paradigms: empirical experimentation, analytical derivation, and computational

investigation. The integration of these techniques provides a transformative framework for

data-driven discovery efforts. This process of scientific discovery is not new, and indeed

mimics the efforts of leading figures of the scientific revolution: Johannes Kepler (1571–

1630) and Sir Isaac Newton (1642–1727). Each played a critical role in developing the

theoretical underpinnings of celestial mechanics, based on a combination of empirical data-

driven and analytical approaches. Data science is not replacing mathematical physics and

engineering, but is instead augmenting it for the twenty-first century, resulting in more of

a renaissance than a revolution.

Data science itself is not new, having been proposed more than 50 years ago by John

Tukey, who envisioned the existence of a scientific effort focused on learning from data,

or data analysis [204]. Since that time, data science has been largely dominated by two

distinct cultural outlooks on data [109]. The machine learning community, which pre-

dominantly comprises computer scientists, is typically centered on prediction quality and

scalable, fast algorithms. Although not necessarily in contrast, the statistical learning com-

munity, often centered in statistics departments, focuses on the inference of interpretable

models. Both methodologies have achieved significant success and have provided the math-

ematical and computational foundations for data science methods. For engineers and scien-

tists, the goal is to leverage these broad techniques to infer and compute models (typically

nonlinear) from observations that correctly identify the underlying dynamics and general-

ize qualitatively and quantitatively to unmeasured parts of phase, parameter, or application

space. Our goal in this book is to leverage the power of both statistical and machine learning

to solve engineering problems.

Themes of This Book
There are a number of key themes that have emerged throughout this book. First, many

complex systems exhibit dominant low-dimensional patterns in the data, despite the rapidly

increasing resolution of measurements and computations. This underlying structure enables

efficient sensing, and compact representations for modeling and control. Pattern extraction

is related to the second theme of finding coordinate transforms that simplify the system.

Indeed, the rich history of mathematical physics is centered around coordinate transfor-

mations (e.g., spectral decompositions, the Fourier transform, generalized functions, etc.),

although these techniques have largely been limited to simple idealized geometries and

linear dynamics. The ability to derive data-driven transformations opens up opportunities

to generalize these techniques to new research problems with more complex geometries

and boundary conditions. We also take the perspective of dynamical systems and control

throughout the book, applying data-driven techniques to model and control systems that

evolve in time. Perhaps the most pervasive theme is that of data-driven applied optimiza-

tion, as nearly every topic discussed is related to optimization (e.g., finding optimal low-

dimensional patterns, optimal sensor placement, machine learning optimization, optimal

control, etc.). Even more fundamentally, most data is organized into arrays for analysis,

where the extensive development of numerical linear algebra tools from the early 1960s

onward provides many of the foundational mathematical underpinnings for matrix decom-

positions and solution strategies used throughout this text.

www.cambridge.org/9781009098489
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-09848-9 — Data-Driven Science and Engineering
Steven L. Brunton, J. Nathan Kutz
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xi

Overview of Second Edition
The integration of machine learning methods in science and engineering has advanced

significantly in the two years since publication of the first edition. The field is fast-moving,

with innovations coming in a diversity of application areas that use creative mathematical

architectures for advancing the state of the art in data-driven modeling and control. This

second edition is aimed at capturing some of the more salient and successful advancements

in the field. It helps bring the reader to a modern understanding of what is possible using

machine learning in science and engineering. As with the first edition, extensive online

supplementary material can be found at the book’s website:

http://databookuw.com

Major changes in the second edition include the following.

• Homework: Extensive homework has been added to every chapter, with additional

homework and projects on the book’s website. Homework ranges in difficulty from

introductory demonstrations and concept-building to advanced problems that repro-

duce modern research papers and may be the basis of course projects.

• Code: Python code has been added throughout, in parallel to existing MATLAB

code, and both sets of codes have been streamlined considerably. All extended codes

are available in MATLAB and Python on the book’s website and GitHub pages.

– Python Code:

https://github.com/dynamicslab/databook_python

– MATLAB Code:

https://github.com/dynamicslab/databook_matlab

Wherever possible, a minimal representation of code has been presented in the text to

improve readability. These code blocks are equivalently expressed in MATLAB and

Python. In more advanced examples, it is often advantageous to use either MATLAB

or Python, but not both. In such cases, this has been indicated and only a single code

block is demonstrated. The full code is available at the above GitHub sites as well

as on the book’s website. In addition, extensive codes are available in R online. We

encourage the reader to read the book and follow along with code to help improve

the learning process and experience.

• New chapters: Two new chapters have been added on “Reinforcement Learning”

and “Physics-Informed Machine Learning,” which are two of the most exciting and

rapidly growing fields of research in machine learning, modeling, and control.

– Reinforcement Learning: Reinforcement learning is a third major branch of

machine learning that is concerned with how to learn control laws and policies

to interact with a complex environment. This is a critical area of research,

situated at the growing intersection of control theory and machine learning.

– Physics-Informed Machine Learning: The integration of physics concepts,

constraints, and symmetries is providing exceptional opportunities for training

machine learning algorithms that are encoded with knowledge of physics. This

chapter features a number of recent innovations aimed at understanding how

this can be done in principle and in practice.

www.cambridge.org/9781009098489
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-09848-9 — Data-Driven Science and Engineering
Steven L. Brunton, J. Nathan Kutz
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Preface

• New sections: We have added and improved material throughout, including the

following.

– Chapter 1: new sections discussing condition number, connections to the

eigendecomposition, and error bounds for SVD (singular value decomposi-

tion) based approximations.

– Chapter 2: new section on the Laplace transform.

– Chapter 6: new sections devoted to autoencoders, recurrent neural networks,

and generative adversarial networks.

– Chapter 7: addition of recent innovations to DMD (dynamic mode decom-

position), Koopman theory, and SINDy (sparse identification of nonlinear

dynamics).

– Chapter 10: new section on model predictive control.

– Chapter 12 (previously Chapter 11): new sections on using neural networks

for time-stepping in reduced-order models, as well as non-intrusive methods

such as DMD.

– Chapter 13 (previously Chapter 12): new sections on decoder networks for

interpolation in model reduction as well as randomized linear algebra methods

for scalable reduced-order models.

• Videos: An extensive collection of video lectures are available on YouTube, covering

nearly every topic from each section of the book. Videos may be found on our

YouTube channels.

– www.youtube.com/c/eigensteve

– www.youtube.com/c/NathanKutzAMATH

– www.youtube.com/c/PhysicsInformedMachineLearning

• Typos: We have corrected typos and mistakes throughout the second edition.

Online Material
We have designed this book to make extensive use of online supplementary material,

including codes, data, videos, homework, and suggested course syllabi. All of this material

can be found at the book’s website: http://databookuw.com.

In addition to course resources, all of the code and data used in the book are available

on the book’s GitHub: https://github.com/dynamicslab/. The codes online are more exten-

sive than those presented in the book, including code used to generate publication-quality

figures. In addition to the Python and MATLAB used throughout the text, online code is

also available in R. Data visualization was ranked as the top-used data science method

in the Kaggle 2017 The State of Data Science and Machine Learning study, and so we

highly encourage readers to download the online codes and make full use of these plotting

commands.

We have also recorded and posted video lectures on YouTube for every section in this

book, available at www.youtube.com/c/eigensteve and www.youtube.com/c/NathanKutz

AMATH. We include supplementary videos for students to fill in gaps in their background

on scientific computing and foundational applied mathematics. We have designed this text

to be both a reference as well as the material for several courses at various levels of student
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Preface xiii

preparation. Most chapters are also modular, and may be converted into stand-alone boot

camps, containing roughly 10 hours of materials each.

How to Use This Book
Our intended audience includes beginning graduate students, or advanced undergraduates,

in engineering and science. As such, the machine learning methods are introduced at a

beginning level, whereas we assume students know how to model physical systems with

differential equations and simulate them with solvers such as ode45. The diversity of topics

covered thus range from introductory to state-of-the-art research methods. Our aim is

to provide an integrated viewpoint and mathematical toolset for solving engineering and

science problems. Alternatively, the book can also be useful for computer science and

statistics students, who often have limited knowledge of dynamical systems and control.

Various courses can be designed from this material, and several example syllabi may be

found on the book’s website – this includes homework, data sets, and code.

First and foremost, we want this book to be fun, inspiring, eye-opening, and empowering

for young scientists and engineers. We have attempted to make everything as simple as

possible, while still providing the depth and breadth required to be useful in research. Many

of the chapter topics in this text could be entire books in their own right, and many of them

are. However, we also wanted to be as comprehensive as may be reasonably expected for

a field that is so big and moving so fast. We hope that you enjoy this book, master these

methods, and change the world with applied data science!
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Common Optimization Techniques, Equations,
Symbols, and Acronyms

Most Common Optimization Strategies
Least-squares (discussed in Chapters 1 and 4) minimizes the sum of the squares of the

residuals between a given fitting model and data. Linear least-squares, where the residuals

are linear in the unknowns, has a closed-form solution which can be computed by taking

the derivative of the residual with respect to each unknown and setting it to zero. It is

commonly used in the engineering and applied sciences for fitting polynomial functions.

Nonlinear least-squares typically requires iterative refinement based upon approximating

the nonlinear least-squares with a linear least-squares at each iteration.

Gradient descent (discussed in Chapters 4 and 6) is the industry-leading, convex opti-

mization method for high-dimensional systems. It minimizes residuals by computing the

gradient of a given fitting function. The iterative procedure updates the solution by moving

downhill in the residual space. The Newton–Raphson method is a one-dimensional version

of gradient descent. Since it is often applied in high-dimensional settings, it is prone to find

only local minima. Critical innovations for big data applications include stochastic gradient

descent and the backpropagation algorithm, which makes the optimization amenable to

computing the gradient itself.

Alternating descent method (ADM) (discussed in Chapter 4) avoids computations of the

gradient by optimizing in one unknown at a time. Thus all unknowns are held constant

while a line search (non-convex optimization) can be performed in a single variable. This

variable is then updated and held constant while another of the unknowns is updated. The

iterative procedure continues through all unknowns and the iteration procedure is repeated

until a desired level of accuracy is achieved.

Augmented Lagrange method (ALM) (discussed in Chapters 3 and 8) is a class of

algorithms for solving constrained optimization problems. They are similar to penalty

methods in that they replace a constrained optimization problem by a series of uncon-

strained problems and add a penalty term to the objective which helps enforce the desired

constraint. ALM adds another term designed to mimic a Lagrange multiplier. The aug-

mented Lagrangian is not the same as the method of Lagrange multipliers.

Linear program and simplex method are the workhorse algorithms for convex opti-

mization. A linear program has an objective function which is linear in the unknown,

and the constraints consist of linear inequalities and equalities. By computing its feasible

region, which is a convex polytope, the linear programming algorithm finds a point in the

polyhedron where this function has the smallest (or largest) value if such a point exists.

The simplex method is a specific iterative technique for linear programs which aims to take

xv
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xvi Common Optimization Techniques, Equations, Symbols, and Acronyms

a given basic feasible solution to another basic feasible solution for which the objective

function is smaller, thus producing an iterative procedure for optimizing.

Most Common Equations and Symbols
Linear Algebra

Linear System of Equations

Ax = b.

The matrix A * R
p×n and vector b * R

p are generally known, and the vector x * R
n is

unknown.

Eigenvalue Equation

AT = T�.

The columns ¿ k of the matrix T are the eigenvectors of A * C
n×n corresponding to

the eigenvalue »k: A¿ k = »k¿ k. The matrix � is a diagonal matrix containing these

eigenvalues, in the simple case with n distinct eigenvalues.

Change of Coordinates

x = �a.

The vector x * R
n may be written as a * R

n in the coordinate system given by the columns

of � * R
n×n.

Measurement Equation

y = Cx.

The vector y * R
p is a measurement of the state x * R

n by the measurement matrix

C * R
p×n.

Singular Value Decomposition

X = U�V7 j ÞU Þ� ÞV7.

The matrix X * C
n×m may be decomposed into the product of three matrices U * C

n×n,

� * C
n×m, and V * C

m×m. The matrices U and V are unitary, so that UU7 = U7U = In×n

and VV7 = V7V = Im×m, where 7 denotes complex conjugate transpose. The columns

of U (respectively V) are orthogonal, called left (respectively right) singular vectors. The

matrix � contains decreasing, non-negative diagonal entries called singular values.

Often, X is approximated with a low-rank matrix ÞX = ÞU Þ� ÞV7, where ÞU and ÞV contain

the first r � n columns of U and V, respectively, and Þ� contains the first r × r block of �.

The matrix ÞU is often denoted � in the context of spatial modes, reduced-order models,

and sensor placement.
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Regression and Optimization

Over-Determined and Under-Determined Optimization for Linear Systems

argmin
x

(�Ax 2 b�2 + »g(x)) or

argmin
x

g(x) subject to �Ax 2 b�2 f ".

Here g(x) is a regression penalty (with penalty parameter » for over-determined systems).

For over- and under-determined linear systems of equations, which result in either no

solutions or an infinite number of solutions of Ax = b, a choice of constraint or penalty,

which is also known as regularization, must be made in order to produce a solution.

Over-Determined and Under-Determined Optimization for Nonlinear Systems

argmin
x

(f (A, x, b) + »g(x)) or

argmin
x

g(x) subject to f (A, x, b) f ".

This generalizes the linear system to a nonlinear system f (·) with regularization g(·). These

over- and under-determined systems are often solved using gradient descent algorithms.

Compositional Optimization for Neural Networks

argmin
Aj

(fM(AM , . . . f2(A2, (f1(A1, x)) · · · )) + »g(Aj)).

Each Ak denotes the weight connecting the neural network from the kth to the (k + 1)th

layer. It is typically a massively under-determined system which is regularized by g(Aj).

Composition and regularization are critical for generating expressive representations and

preventing overfitting. The full network is often denoted f» .

Dynamical Systems and Reduced-Order Models

Nonlinear Ordinary Differential Equation (Dynamical System)

d

dt
x(t) = f(x(t), t; ³).

The vector x(t) * R
n is the state of the system evolving in time t, ³ are parameters, and f is

the vector field. Generally, f is Lipschitz continuous to guarantee existence and uniqueness

of solutions.

Linear Input–Output System

d

dt
x = Ax + Bu,

y = Cx + Du.

The state of the system is x * R
n, the inputs (actuators) are u * R

q, and the outputs

(sensors) are y * R
p. The matrices A, B, C, and D define the dynamics, the effect of

actuation, the sensing strategy, and the effect of actuation feed-through, respectively.
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Nonlinear Map (Discrete-Time Dynamical System)

xk+1 = F(xk).

The state of the system at the kth iteration is xk * R
n, and F is a possibly nonlinear

mapping. Often, this map defines an iteration forward in time, so that xk = x(k�t); in this

case the flow map is denoted F�t.

Koopman Operator Equation (Discrete-Time)

Ktg = g ç Ft %ó Kt× = »×.

The linear Koopman operator Kt advances measurement functions of the state g(x) with the

flow Ft. The eigenvalues and eigenvectors of Kt are » and ×(x), respectively. The operator

Kt operates on a Hilbert space of measurements.

Nonlinear Partial Differential Equation (PDE)

ut = N(u, ux, uxx, . . . , x, t; ³).

The state of the PDE is u, the nonlinear evolution operator is N, subscripts denote

partial differentiation, and x and t are the spatial and temporal variables, respectively.

The PDE is parameterized by values in ³. The state u of the PDE may be a con-

tinuous function u(x, t), or it may be discretized at several spatial locations, u(t) =
�

u(x1, t) u(x2, t) . . . u(xn, t)
�T * R

n.

Galerkin Expansion

The continuous Galerkin expansion is

u(x, t) j
r

�

k=1

ak(t)Ëk(x).

The functions ak(t) are temporal coefficients that capture the time dynamics, and Ëk(x) are

spatial modes. For a high-dimensional discretized state, the Galerkin expansion becomes

u(t) j
�r

k=1 ak(t)Ëk. The spatial modes Ëk * R
n may be the columns of � = ÞU.

Complete Symbols
Dimensions
K Number of non-zero entries in a K-sparse vector s

m Number of data snapshots (i.e., columns of X)

n Dimension of the state, x * R
n

p Dimension of the measurement or output variable, y * R
p

q Dimension of the input variable, u * R
q

r Rank of truncated SVD, or other low-rank approximation
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Scalars
s Frequency in Laplace domain

t Time

· Learning rate in gradient descent

�t Time-step

x Spatial variable

�x Spatial step

Ã Singular value

» Eigenvalue

» Sparsity parameter for sparse optimization (Section 7.3)

» Lagrange multiplier (Sections 3.7, 8.4, and 12.4)

Ä Threshold

Vectors
a Vector of mode amplitudes of x in basis �, a * R

r

a Action of reinforcement learning agent (Chapter 11)

b Vector of measurements in linear system Ax = b

b Vector of DMD mode amplitudes (Section 7.2)

Q Vector containing potential function for PDE-FIND

r Residual error vector

s Sparse vector, s * R
n (Chapter 3)

s State of the environment in reinforcement learning (Chapter 11)

u Control variable (Chapters 8, 9, and 10)

u PDE state vector (Chapters 12 and 13)

w Exogenous inputs

wd Disturbances to system

wn Measurement noise

wr Reference to track

x State of a system, x * R
n

xk Snapshot of data at time tk

xj Data sample j * Z := {1, 2, . . . , m} (Chapters 5 and 6)

Þx Reduced state, Þx * R
r, so that x j ÞUÞx

Æx Estimated state of a system

y Vector of measurements, y * R
p

yj Data label j * Z := {1, 2, . . . , m} (Chapters 5 and 6)

Æy Estimated output measurement

z Transformed state, x = Tz (Chapters 8 and 9)

� Error vector

³ Bifurcation parameters

¿ Eigenvector of Koopman operator (Sections 7.4 and 7.5)

¿ Sparse vector of coefficients (Section 7.3)

» Neural network parameters

Ç DMD mode

Ë POD mode

Ó Vector of PDE measurements for PDE-FIND
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Matrices
A Matrix for system of equations or dynamics
ÞA Reduced dynamics on r-dimensional POD subspace

AX Matrix representation of linear dynamics on the state x

AY Matrix representation of linear dynamics on the observables y

(A, B, C, D) Matrices for continuous-time state-space system

(Ad, Bd, Cd, Dd) Matrices for discrete-time state-space system

( ÆA, ÆB, ÆC, ÆD) Matrices for state-space system in new coordinates z = T21x

( ÞA, ÞB, ÞC, ÞD) Matrices for reduced state-space system with rank r

B Actuation input matrix

C Linear measurement matrix from state to measurements

C Controllability matrix

F Discrete Fourier transform

G Matrix representation of linear dynamics on the states and

inputs [xTuT ]T

H Hankel matrix

H� Time-shifted Hankel matrix

I Identity matrix

K Matrix form of Koopman operator (Chapter 7)

K Closed-loop control gain (Chapter 8)

Kf Kalman filter estimator gain

Kr LQR control gain

L Low-rank portion of matrix X (Chapter 3)

O Observability matrix

P Unitary matrix that acts on columns of X

Q Weight matrix for state penalty in LQR (Section 8.4)

Q Orthogonal matrix from QR factorization

R Weight matrix for actuation penalty in LQR (Section 8.4)

R Upper triangular matrix from QR factorization

S Sparse portion of matrix X (Chapter 3)

T Matrix of eigenvectors (Chapter 8)

T Change of coordinates (Chapters 8 and 9)

U Left singular vectors of X, U * R
n×n

ÆU Left singular vectors of economy SVD of X, U * R
n×m

ÞU Left singular vectors (POD modes) of truncated SVD of X, U * R
n×r

V Right singular vectors of X, V * R
m×m

ÞV Right singular vectors of truncated SVD of X, V * R
m×r

� Matrix of singular values of X, � * R
n×m

Æ� Matrix of singular values of economy SVD of X, � * R
m×m

Þ� Matrix of singular values of truncated SVD of X, � * R
r×r

W Eigenvectors of ÞA
Wc Controllability Gramian

Wo Observability Gramian

X Data matrix, X * R
n×m

X� Time-shifted data matrix, X� * R
n×m

Y Projection of X matrix onto orthogonal basis in randomized SVD (Section 1.8)
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Y Data matrix of observables, Y = g(X), Y * R
p×m (Chapter 7)

Y� Shifted data matrix of observables, Y� = g(X�), Y� * R
p×m (Chapter 7)

Z Sketch matrix for randomized SVD, Z * R
n×r (Section 1.8)

� Measurement matrix times sparsifying basis, � = C� (Chapter 3)

� Matrix of candidate functions for SINDy (Section 7.3)

� Matrix of derivatives of candidate functions for SINDy (Section 7.3)

� Matrix of coefficients of candidate functions for SINDy (Section 7.3)

� Matrix of nonlinear snapshots for DEIM (Section 13.5)

� Diagonal matrix of eigenvalues

Ó Input snapshot matrix, Ó * R
q×m

� Matrix of DMD modes, � � X�V�21W

� Orthonormal basis (e.g., Fourier or POD modes)

Tensors

(A,B,M) N-way array tensors of size I1 × I2 × · · · × IN

Norms
� · �0 �0 pseudo-norm of a vector x; the number of non-zero elements in x

� · �1 �1-norm of a vector x given by �x�1 =
�n

i=1 |xi|
� · �2 �2-norm of a vector x given by �x�2 =

�

�n
i=1(x2

i )

� · �2 2-norm of a matrix X given by �X�2 = maxv �=0 �Xv�2/�v�2

� · �F Frobenius norm of a matrix X given by �X�F =
�

�n
i=1

�m
j=1 |Xij|2

� · �7 Nuclear norm of a matrix X given by �X�7 = trace(
:

X7X) =
�m

i=1 Ãi

(for m f n)

"·, ·" Inner product; for functions, "f (x), g(x)" =
" >
2> f (x)g7(x) dx

"·, ·" Inner product; for vectors, "u, v" = u7v

Operators, Functions, and Maps
F Fourier transform

F Discrete-time dynamical system map

Ft Discrete-time flow map of dynamical system through time t

f» Neural network (Chapter 6)

f Continuous-time dynamical system (Chapter 7)

G Gabor transform

G Transfer function from inputs to outputs (Chapter 8)

g Scalar measurement function on x

g Vector-valued measurement functions on x

J Cost function for control

� Loss function for support vector machines (Chapter 5)

K Koopman operator (continuous-time)

Kt Koopman operator associated with time-t flow map

L Laplace transform

L Loop transfer function (Chapter 8)
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xxii Common Optimization Techniques, Equations, Symbols, and Acronyms

L Linear partial differential equation (Chapters 12 and 13)

N Nonlinear partial differential equation

O Order of magnitude

Q Quality function (Chapter 11)

� Real part

S Sensitivity function (Chapter 8)

T Complementary sensitivity function (Chapter 8)

V Value function (Chapter 11)

W Wavelet transform

¿ Incoherence between measurement matrix C and basis �

» Condition number

Ã Policy function for agent in reinforcement learning (Chapter 11)

× Koopman eigenfunction

' Gradient operator

7 Convolution operator

Most Common Acronyms
CNN Convolutional neural network

DL Deep learning

DMD Dynamic mode decomposition

FFT Fast Fourier transform

ODE Ordinary differential equation

PCA Principal component analysis

PDE Partial differential equation

POD Proper orthogonal decomposition

RL Reinforcement learning

ROM Reduced-order model

SVD Singular value decomposition

Other Acronyms
ADM Alternating directions method

AIC Akaike information criterion

ALM Augmented Lagrange multiplier

ANN Artificial neural network

ARMA Autoregressive moving average

ARMAX Autoregressive moving average with exogenous input

BIC Bayesian information criterion

BPOD Balanced proper orthogonal decomposition

DMDc Dynamic mode decomposition with control

CCA Canonical correlation analysis

CFD Computational fluid dynamics

CoSaMP Compressive sampling matching pursuit

www.cambridge.org/9781009098489
www.cambridge.org


Cambridge University Press & Assessment
978-1-009-09848-9 — Data-Driven Science and Engineering
Steven L. Brunton, J. Nathan Kutz
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Common Optimization Techniques, Equations, Symbols, and Acronyms xxiii

CWT Continuous wavelet transform

DEIM Discrete empirical interpolation method

DCT Discrete cosine transform

DFT Discrete Fourier transform

DMDc Dynamic mode decomposition with control

DNS Direct numerical simulation

DP Dynamic programming

DQN Deep Q network

DRL Deep reinforcement learning

DWT Discrete wavelet transform

ECOG Electrocorticography

eDMD Extended DMD

EIM Empirical interpolation method

EM Expectation maximization

EOF Empirical orthogonal functions

ERA Eigensystem realization algorithm

ESC Extremum-seeking control

GMM Gaussian mixture model

HAVOK Hankel alternative view of Koopman

HER Hindsight experience replay

HJB Hamilton–Jacobi–Bellman equation

JL Johnson–Lindenstrauss

KL Kullback–Leibler

ICA Independent component analysis

KLT Karhunen–Loève transform

LAD Least absolute deviations

LASSO Least absolute shrinkage and selection operator

LDA Linear discriminant analysis

LQE Linear–quadratic estimator

LQG Linear–quadratic Gaussian controller

LQR Linear–quadratic regulator

LTI Linear time-invariant system

MDP Markov decision process

MIMO Multiple-input, multiple-output

MLC Machine learning control

MPE Missing point estimation

mrDMD Multi-resolution dynamic mode decomposition

NARMAX Nonlinear autoregressive model with exogenous inputs

NLS Nonlinear Schrödinger equation

OKID Observer Kalman filter identification

PBH Popov–Belevitch–Hautus test

PCP Principal component pursuit

PDE-FIND Partial differential equation functional identification

of nonlinear dynamics

PDF Probability density function

PID Proportional–integral–derivative control
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PINN Physics-informed neural network

PIV Particle image velocimetry

RIP Restricted isometry property

rSVD Randomized SVD

RKHS Reproducing kernel Hilbert space

RNN Recurrent neural network

RPCA Robust principal component analysis

SGD Stochastic gradient descent

SINDy Sparse identification of nonlinear dynamics

SINDYc SINDy with control

SISO Single-input, single-output

SRC Sparse representation for classification

SSA Singular spectrum analysis

STFT Short-time Fourier transform

STLS Sequential thresholded least-squares

SVM Support vector machine

TICA Time-lagged independent component analysis

VAC Variational approach of conformation dynamics
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