Semiconductor-on-Insulator and Thin Film Transistor Technology
Semiconductor-on-Insulator and Thin Film Transistor Technology

Symposium held December 3-6, 1985, Boston, Massachusetts, U.S.A.

EDITORS:

A. Chiang
Xerox Palo Alto Research Center, Palo Alto, California, U.S.A.

M. W. Geis
MIT Lincoln Laboratory, Lexington, Massachusetts, U.S.A.

L. Pfeiffer
AT&T Bell Laboratories, Murray Hill, New Jersey, U.S.A.

MATERIALS RESEARCH SOCIETY SYMPOSIA PROCEEDINGS VOLUME 53

MRS MATERIALS RESEARCH SOCIETY
Pittsburgh, Pennsylvania
Contents

PREFACE xv

ACKNOWLEDGMENTS xix

PART I: ZONE MELTING AND RECRYSTALLIZATION

* CRYSTALLINE FILMS ON AMORPHOUS SUBSTRATES BY ZONE MELTING AND SURFACE-ENERGY-DRIVEN GRAIN GROWTH IN CONJUNCTION WITH PATTERNING
 H.I. Smith, M.W. Geis, C.V. Thompson and C.K. Chen 3

A STUDY OF MELTING AND RESOLIDIFICATION OF SILICON-ON-INSULATOR STRUCTURES FORMED BY LATERAL EPITAXY
 D.A. Williams, R.A. McMahon, D.G. Hasko, H. Ahmed, C.F. Hopper and D.J. Godfrey 15

FORMATION OF FACETS AT THE SOLID–MELT INTERFACE IN SILICON

REDUCED SUBBOUNDARY MISALIGNMENT IN SOI FILMS SCANNED AT LOW VELOCITIES
 L. Pfeiffer, K.W. West, D.C. Joy, J.M. Gibson and A.E. Gelman 29

ELIMINATION OF SUBBOUNDARIES FROM ZONE-MELTING-RECRYSTALLIZED SILICON-ON-INSULATOR FILMS

ADDRESSING THE PROBLEMS OF AGGLOMERATION, SURFACE ROUGHNESS AND CRYSTAL IMPERFECTION IN SOI FILMS
 S. Ramesh, A. Martinez, J. Petruzzello, H. Baumgart and E. Arnold 45

CAPPING TECHNIQUES FOR ZONE-MELTING-RECRYSTALLIZED Si-ON-INSULATOR FILMS

IMPROVEMENT OF WETTING OF SILICON ON INSULATOR DURING LAMP ZONE MELTING USING PLASMA NITRIDATION
 M. Haond, D. Dutartre, R. Pantel, A. Straboni and B. Vuillermoz 59

TWIN STABILIZED PLANAR GROWTH OF SOI FILMS
 H. Baumgart, F. Phillipp, S. Ramesh, B. Khan, A. Martinez and E. Arnold 65

TWO-BEAM LASER RECRYSTALLIZATION OF SILICON ON AN INSULATING SUBSTRATE
 S. Dasgupta, H.E. Jackson and J.T. Boyd 71

A SEEDED CHANNEL APPROACH TO SILICON-ON-INSULATOR TECHNOLOGY

<100> SINGLE CRYSTAL SOI FILMS OBTAINED ON 4. in WAFERS USING HALOGEN LAMPS
 M. Haond, D. Dutartre and D. Bensahel 83

* Invited paper
MICROSCOPY OF THIN Si FILMS DURING LAMP ZONE MELTING
D. Dutartre, M. Haond and D. Bensahel
89

LARGE GRAIN GROWTH OF SILICON FILMS ON LOW TEMPERATURE GLASS SUBSTRATES
C.E. Bleil and J.R. Troxell
95

ZONE MELTING RECRYSTALLIZATION OF GaAs FILMS ON OXIDIZED Si
W. Zhu and W. Wang
101

LASER RECRYSTALLIZATION OF MOCVD POLY-GaAs ON INSULATING SUBSTRATES
X.M. Bao, X.F. Huang, P. Han and J.M. Yin
107

LASER RECRYSTALLIZATION OF InP FILMS ON OXIDIZED Si SUBSTRATE
X. Li, W. Zhu, C. Lin, W. Wang and S. Tsou
113

PART II: HETEROEPITAXY AND POROUS SILICON

* SOLID PHASE EPITAXIAL RECRYSTALLIZATION OF SOS, WITH APPLICATIONS TO SUBMICROMETER CMOS AND BIPOLAR DEVICES
P.K. Vasudev
121

* FORMATION OF EPITAXIAL SOI STRUCTURES USING ALKALINE EARTH FLUORIDE FILMS
H. Ishiwara and T. Asano
129

* MOS CIRCUITS ON SILICON-BORON PHOSPHIDE-SILICON MULTILAYERS
D.J. Dumin
137

HIGH-QUALITY THIN Si FILM BY SPE REGROWTH ON EPITAXIALLY GROWN SPINEL
T. Kimura, H. Yamawaki, Y. Arimoto, K. Ikeda, M. Ihara and M. Ozeki
143

REDUCTION OF Ca and F SEGREGATED AT THE SURFACE OF A Si/CaF₂/Si(100) STRUCTURE BY SOLID PHASE EPITAXY OF Si
M. Šasaki, H. Onoda and N. Hirashita
149

IMPROVING THE STRUCTURAL AND ELECTRICAL PROPERTIES OF EPITAXIAL CaF₂ ON Si BY RAPID THERMAL ANNEALING
155

ENHANCING THE GRAIN SIZE AND {110} TEXTURE OF POLYCRYSTALLINE Si FILMS BY SEED SELECTION THROUGH ION CHANNELING: IMPLANT-DOSE DEPENDENCE
K. T-Y. Kung and R. Reif
163

MORPHOLOGY OF SILICON ISLANDS GROWN BY SELECTIVE EPITAXY OVER SILICON DIOXIDE
169

COMPARISON OF STRUCTURAL AND ELECTRICAL CHARACTERISTICS OF SOLID-PHASE EPITAXIAL FILMS RECRYSTALLIZED BY RAPID THERMAL ANNEALING AND FURNACE ANNEALING
R. Sundaresan, P.-H. Chang, S.D.S. Malhi and N.W. Lam
175

* Invited papers
GALLIUM ARSENIDE LAYERS GROWN BY MBE ON GERMANIUM ISLANDS ON INSULATOR
M. Takai, Y. Kodama, T. Tanigawa, K. Kobayashi, K. Gamo and S. Namba 181

EPITAXIAL REGROWTH OF a-GaAs/(100) SILICON BY EXCIMER LASER ANNEALING AT 248 nm
A. Christou, T. Efthimiopoulos, G. Kyriakidis and C. Varmazis 187

Si-MBE SOI

LPCVD TUNGSTEN DEPOSITION ON POROUS SILICON FOR FORMATION OF BURIED CONDUCTORS
S.S. Tsao and R.S. Blewer 199

PART III: BURIED OXIDE AND NITRIDE BY IMPLANTATION

* SILICON ON INSULATOR FORMED BY O⁺ OR N⁺ ION IMPLANTATION
P.L.F. Hemment 207

* EPITAXIAL GROWTH ON SIMOX WAFERS
H.W. Lam 223

IMPROVED SOI FILMS BY HIGH DOSE OXYGEN IMPLANTATION AND LAMP ANNEALING

FORMATION OF BURIED SiO₂ BY HIGH DOSE IMPLANTATION OF OXYGEN AT ROOM AND LIQUID NITROGEN TEMPERATURES
F. Namavar, J.I. Budnick, F.H. Sanchez and H.C. Hayden 233

HEAVY METAL GETTERING IN IMPLANTED BURIED-OXIDE STRUCTURES
T.I. Kamins and S.Y. Chiang 239

DONOR CREATION DURING OXYGEN IMPLANTED BURIED OXIDE FORMATION
M. Delfino and P.K. Chu 245

THE EFFECTS OF ANNEALING TEMPERATURE ON THE CHARACTERISTICS OF BURIED OXIDE SILICON-ON-INSULATOR

EFFECT OF ANNEALING ON THE STRUCTURE OF BURIED SiO₂ LAYERS FORMED BY ELEVATED TEMPERATURE HIGH DOSE OXYGEN IMPLANTATION
S.J. Krause, C.O. Jung, S.R. Wilson, R.P. Lorigan and M.E. Burnham 257

STRAIN AND DAMAGE IN SILICON DUE TO A DEEP OXYGEN IMPLANTATION
T. Vreeland, Jr. and T.S. Jayadev 263

THE PHYSICAL AND ELECTRICAL PROPERTIES OF BURIED NITRIDE SOI STRUCTURES SYNTHESIZED BY NITROGEN ION IMPLANTATION

FORMATION OF SILICON ON INSULATOR STRUCTURES BY IMPLANTED NITROGEN
L. Nesbit, S. Stiffler, G. Slusser and H. Vinton 273

STUDY OF DOSE AND DOSE RATE IN THE IMPLANTATION OF NITROGEN ISOTOPES INTO Si(100)
F. Namavar, J.I. Budnick, A. Fasihuddin, F.H. Sanchez and H.C. Hayden 281

* Invited papers

ix
PART IV: CHARACTERIZATION OF SOI THIN FILMS

* THERMAL STRESS DURING ZONE-MELTING-RECRYSTALLIZATION OF SILICON ON INSULATOR FILMS: THE ORIGIN OF SUBBOUNDARIES AND IN-PLANE ORIENTATION OF SOI
 J.M. Gibson, L.N. Pfeiffer, K.W. West and D.C. Joy 289

* THE MICROCHEMISTRY OF THE SiO2/SILICON INTERFACE
 C.R.M. Grovenor 301

PROPERTIES OF THIN FILMS AFTER FOCUSED BEAM PROCESSING
 I.H. Campbell, P.M. Fauchet and F. Adar 311

INTERPRETATION OF UV REFLECTANCE MEASUREMENTS ON SILICON-ON-SAPPHIRE BY SPECTRAL REFLECTANCE AND SPECTROSCOPIC ELLIPSOMETRY STUDIES

A TECHNIQUE FOR IN-SITU DETECTION OF GROWTH DISLOCATIONS
 S.D. Peteves, J.A. Sarreal and C.J. Abbaschian 323

MECHANICAL PROPERTIES OF Ga1-xInxAs
 S. Guruswamy, J.P. Hirth and K.T. Faber 329

* ELECTRICAL CHARACTERIZATION OF CRYSTALLIZED-SILICON THIN FILMS
 N.M. Johnson 337

MINORITY CARRIER LIFETIME STUDIES IN HALOGEN LAMP RECRYSTALLIZED SOI FILMS
 A. Chantre, D. Ronzani and D.P. Vu 349

ELECTRICAL CHARACTERIZATION OF BEAM-RECRYSTALLIZED SOI STRUCTURES USING A DEPLETION MODE TRANSISTOR
 D.P. Vu, A. Chantre, D. Ronzani and J.C. Pfister 357

PART V: DEVICE AND CIRCUIT APPLICATIONS

* ASSESSMENT OF SILICON-ON-INSULATOR TECHNOLOGIES FOR VLSI
 B-Y. Tsaur 365

* INTEGRATION OF SEMICONDUCTOR AND MAGNETIC BUBBLE DEVICES: SOI ON GARNET
 D.W. Greve, M.H. Kryder and P.H.L. Rasky 375

* FABRICATION PROCESS, APPLICATION AND FUTURE FOR AN ELEMENTAL LEVEL VERTICALLY INTEGRATED CIRCUIT (ELVIC)
 T. Enomoto 383

VERTICAL BIPOLAR TRANSISTORS AND A MERGED 3-D VERTICAL BIPOLAR-MOS DEVICE IN RECRYSTALLIZED POLYSILICON
 J.C. Sturm and J.F. Gibbons 395

PHOTOCONDUCTION IN THIN-FILM TRANSISTORS FABRICATED FROM LASER-CRYSTALLIZED SILICON ON FUSED QUARTZ
 A. Chiang, M.H. Zarzycki and N.M. Johnson 401

LATCHUP FREE LATERAL CMOS ON LASER RECRYSTALLIZED SILICON

* Invited papers

© in this web service Cambridge University Press
www.cambridge.org
Preface

This volume contains selected papers presented at the symposium on "Semiconductor-on-Insulator (SOI) and Thin Film Transistor (TFT) Technology," held in Boston, Massachusetts, December 3-6, 1985. The symposium was organized to assess the progress in SOI material technologies, as well as their applications to VLSI circuits and thin film transistors. Sixteen distinguished scientists were invited to review research activities in seven topical sessions. Fifty-five contributed papers reported on current efforts and recent discoveries in oral and poster presentations. The conference was attended by an international audience representing the USA, France, England, Japan, and China.

The papers in this book have been arranged into five parts. The first three parts, "Zone Melting and Recrystallization," "Heteroepitaxy and Porous Silicon," and "Buried Oxide and Nitride by Implantation," deal with specific approaches for fabricating SOI material and structures. The last two parts, "Characterization of SOI Thin Films" and "Device and Circuit Applications," are more general in scope.

Reports on the zone melt and recrystallization (ZMR) technique in Part I suggest that the long intractable problem of low angle grain boundary formation is at last showing signs of being understood and controlled. Very large area single crystalline silicon thin films, with very low angle "dotted" subboundaries or arrays of isolated dislocations as the only defects, are described in several papers. The best of this material had total dislocation densities between 10^5 to 10^6/cm2. This was achieved by empirically choosing the thermal power, scan rate, or patterning method to generate a suitable thermal gradient across the melt–solid interface. A few papers put forth new models of subboundary formation which promise to stimulate further experimental progress. Simulation of heat flow and modeling of molecular dynamics provide more analytical tools to elucidate the mechanism of ZMR in thin films. The role of nitrogen in the capping layer, for preventing melt agglomeration by improved wetting at the molten Si/SiO$_2$ cap interface, is clearly demonstrated in three papers. Laser crystallization of III-V compounds has resulted in polycrystalline materials with grains of a few microns.

Heteroepitaxy usually allows lower processing temperature than the melt and recrystallization approach. Two types of research activities are represented in Part II. With the well established silicon-on–sapphire (SOS) technology, advances are illustrated by the high-performance submicron CMOS circuits fabricated in low-defect (< 0.1% microtwin) SOS films grown by solid phase epitaxy (SPE). With other materials, novel techniques are discussed for growing various combinations of semiconducting films of Si, Ge or III-V compounds with insulating layers of alkaline earth fluorides, boron phosphide, spinel or SiO$_2$. The results presented here reflect significant improvement in crystalline quality and surface morphology for many of these films. Some of the techniques used were amorphization and subsequent SPE, low temperature predeposition, lattice constant matching with mixed-compounds, patterning of underlying layers, laser or rapid thermal annealing, a special gas mixture in epitaxial reactors, and a porous silicon substrate. Si films formed by the predeposition technique on CaF$_2$ have a x_{min} of less than 10%. Working devices, with characteristics approaching those of bulk semiconductor devices, are also reported in several papers. Most noteworthy are the three dimensional circuits with functioning devices in up to four layers of Si/BP.
There were few papers presented at the symposium on porous silicon in the conventional SOI sense. However, a novel derivation of the technique to generate a buried conducting layer in silicon stimulated the imagination of many in the audience.

Part II gives an account of the flourishing activities and dramatic advancements in ion beam synthesized insulators now becoming possible with the availability of high current implanters. There are reports on the use of post O⁺ implantation annealing at unprecedentedly high temperatures (1300–1400°C) to achieve a low-defect SOI overlayer, to annihilate O thermal donors near the top Si surface, and to generate abrupt Si/SiO₂/Si interfaces. These Si overlayers were characterized by a \(x_{\text{min}} \) of 3.3%, and threading dislocation densities of \(10^6 \) to \(10^9/cm^2 \). Papers on gettering of heavy metals by implant-damaged regions, and achievement of high quality epitaxial Si grown on oxygen implanted SOI (SIMOX), further suggest the readiness of this material for device and circuit fabrication. Although in its relative infancy, buried nitride requires a lower post implantation annealing temperature (1200–1250°C) to form abrupt interfaces and to generate a Si overlayer of comparable quality \(x_{\text{min}} = 3\% \). Still, problems in void formation, electrical leakage of the buried nitride, and N thermal donor formation remain causes for concern on its practical applications.

Experimental evidence that thermal stress is partly responsible for the formation of subboundaries and the predominance of the <100> texture in ZMR Si is offered by the first paper in Part IV. The following papers discuss application of various structural characterization techniques, including a pulsed laser atom probe for the microscopic Si/SiO₂ interface, a Raman microprobe for local stress, a UV reflectance and ellipsometry study of SOS material, and the use of Seebeck emf for in-situ detection of growth dislocations across the solid/liquid interface. A trio of papers on electrical characterization expound on the advantage of using depletion mode transistors in the current transient mode of deep level transient spectroscopy for their high sensitivity, small sampling area, and versatility in measurement configurations. Minority carrier generation lifetimes have been clearly correlated with such defects as precipitates of impurities, subboundaries or interface states in recrystallized films. Depth profiles of mobility can also be obtained.

One of the major applications of SOI materials is direct replacement of certain critical bulk Si VLSI circuits with those isolated from the Si substrate by a thin insulator. The first paper in Part V very eloquently states the potential advantages of complete dielectric isolation, increased packing density, reduced parasitic capacitance and radiation hardness. High performance MOS and bipolar devices and SSI circuits have been built routinely to characterize the ZMR and SPE material. Fully functioning LSI circuits have also been demonstrated in ZMR Si and SIMOX. However, improvement in material quality and/or innovation in device design are still needed to implement submicron VLSI circuits in SOI.

A case in point is the use of polysilicon transistors in 3-dimensional integrated circuits. The decision to build less critical components in the inferior polysilicon SOI material and the ensuing simplified process greatly facilitated demonstration and commercialization of 64K and 256K VLSI CMOS memories. An even more radical approach to 3-D ICs is the ELVIG (Elemental Level Vertically Integrated Circuit) method. Two IC chips fabricated with two different technologies (for example, NMOS and PMOS) are electrically merged through vertical interconnects by thermal compression bonding. Initial success has been shown in 31-stage ring oscillators. As for 3-D ICs with more than one layer of SOI structures, heteroepitaxy in solid state seems to offer the most promise because of its low processing temperature.
The other major application of SOI materials is building thin film transistors (TFTs) on non-Si substrates for opto-, acousto-, or magneto-electronic input/output devices to achieve parallel data transmission at system interfaces. Examples in this symposium include a silicon-on-garnet material for magnetic bubble memories, an image sensor array, and the flat panel displays referred to by numerous papers throughout the book. Since the substrate often plays an active role in the total system, process compatibility is usually more important than obtaining defect-free SOI material. Indeed, both polysilicon and amorphous silicon are often preferred over recrystallized Si in TFT fabrication because of their low processing temperature and large area deposition capability. The five papers on polysilicon TFTs deal with process optimization, grain boundary passivation, diffusion doping, leakage current control, and device modeling. The final three papers pertaining to amorphous silicon TFTs fabrication, gate dielectrics, and photoluminescence properties provide only a sample of the vast volume of literature on amorphous silicon material and devices. The reader is referred to other recent volumes of MRS Proceedings for more extensive coverage on this subject.

Symposium Chairs
Anne Chiang Michael W. Geis Loren Pfeiffer

June 1986
Acknowledgments

We wish to thank all of the contributors and participants who made the symposium so successful. We particularly would like to acknowledge the invited speakers, who provided excellent summaries of specific areas and set the tone of the meeting. They are:

R. H. Baughman
D. J. Dumin
T. Enomoto
J. M. Gibson
D. W. Greve
C. R. M. Grovenor
P. L. F. Hemment
H. Ishiwar a

K. A. Jackson
N. M. Johnson
H. W. Lam
H. Shichijo
H. I. Smith
B-Y. Tsaur
P. K. Vasudev
M. S. Wrighton

We are also indebted to the session chairs, who directed the sessions, guided the discussions, and gave invaluable help in getting the papers refereed. They are:

H. Baumgart
G. K. Celler
C. K. Chen
T. I. Kamins
S. Malhi
L. A. Nesbit

J. M. Phillips
R. F. Pinizzotto
F. A. Ponce
J. A. Roth
J. C. Sturm

It is our great pleasure to acknowledge, with gratitude, the administrative support from Xerox Corporation, and the financial support provided by the Rome Air Development Center; the Army Research Office, Materials Science Division; and the Naval Research Laboratory.

Finally we wish to express our appreciation to V. Moffat (Xerox), I. Collins (Lincoln Lab), and H. Weston (AT&T Bell Labs) for excellent secretarial support, as well as S. Marsh and N. Geis for expert assistance in putting this book together.