This volume gives an historical overview of the development of professional optical and radio observatories from 1945 to today. It covers the environment in which these facilities were developed by organisations in the United States, Europe and elsewhere, often led by larger-than-life individuals, as well as exploring the financial and political factors that both constrained and encouraged progress. As progressively more expensive optical facilities were built, they exploited new technologies to significantly improve their performance: CCDs, active and adaptive optics, and spun honeycomb and segmented mirrors. The second half of this volume turns to the parallel history of radio astronomy facilities throughout the world, finishing with the ALMA observatory in Chile. This is the ground-based companion to the author’s previous work on space astronomy, *New Cosmic Horizons*; it is written for both technical and non-technical readers interested in the modern history of astronomy and its observational facilities.

David Leverington received his first degree in Physics from Oxford University in 1963. Since then he has held a number of senior positions in the space industry, working for both the European Space Agency and British Aerospace (now BAE Systems) before taking early retirement in 1992. Subsequently he has written four books: *A History of Astronomy from 1890 to the Present* (Springer-Verlag, 1996), *New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope* (Cambridge University Press, 2000), *Babylon to Voyager and Beyond: A History of Planetary Astronomy* (Cambridge University Press, 2003) and *Encyclopedia of the History of Astronomy and Astrophysics* (Cambridge University Press, 2013). He was also technical consultant for ABC-CLIO’s *Space Exploration and Humanity: A Historical Encyclopedia* (2010) supported by the History Committee of the American Astronautical Society. He was awarded his PhD in 1997.
OBSERVATORIES AND TELESCOPES OF MODERN TIMES

Ground-Based Optical and Radio Astronomy Facilities since 1945

DAVID LEVERINGTON
Contents

Preface page xi

Part 1 Optical Observatories

1 Palomar Mountain Observatory 3
 1.1 The 200 inch (5.1 m) Hale Telescope 3
 1.2 Palomar Schmidt Telescopes 11

2 The United States Optical Observatory 16
 2.1 Introduction 16
 2.2 Founding of Association of Universities for Research in
 Astronomy (AURA) 17
 2.3 The National Observatory Telescopes on Kitt Peak 20
 The 84 inch (2.1 m) Telescope 20
 McMath-Pierce Solar Telescope 21
 Kitt Peak Vacuum Telescope 23
 Mayall 158 inch (4.0 m) Telescope 23
 Remote Control Telescope 25
 Restructuring 26
 2.4 Other Telescopes on Kitt Peak 27
 Steward Observatory’s 36 inch (0.9 m) and the
 Spacewatch Project 27
 Steward Observatory’s 90 inch (2.3 m) Bok Telescope 27
 University of Michigan’s 52 inch (1.3 m) and the McGraw-
 Hill Observatory 29
 Move of the Burrell Schmidt 30
 Hiltner 2.4 m Telescope 30
Contents

v

2.5 National Observatory Funding Problems 31
 WIYN 3.5 m Telescope 32
 SARA 0.9 m Telescope 33
 Turn of the Century and Beyond 33
2.6 Cerro Tololo and its National Observatory Telescopes 35
 Blanco 158 inch (4.0 m) Telescope 39
2.7 Other Telescopes on Cerro Tololo 41

3 From the Next Generation Telescope to Gemini and SOAR 47
 3.1 Next Generation Telescope (NGT) 47
 3.2 National New Technology Telescope (NNTT) 48
 3.3 Gemini 52
 3.4 SOAR 63

4 Competing Primary Mirror Designs 67
 4.1 Spun Honeycomb Mirrors 67
 4.2 Segmented Mirrors 71
 Keck Telescopes 72
 Hobby-Eberly Telescope 82
 SALT 84
 LAMOST 86
 4.3 Thin Meniscus Mirrors 87
 4.4 Metal Mirrors 89
 4.5 Liquid Mirror Telescopes 90

5 Active Optics, Adaptive Optics and Other Technical Innovations 96
 5.1 Active Optics 96
 5.2 Adaptive Optics 100
 Curvature Sensor and Bimorph Systems 102
 Altitude-Conjugate Systems 102
 Laser Guide Star Systems 103
 Multi-Conjugate Systems 105
 Adaptive Secondary Mirrors 106
 5.3 The Change to Altazimuth Mounts 107
 5.4 Charge-Coupled Devices 109

6 European Northern Observatory and Calar Alto 114
 6.1 European Northern Observatory, Canary Islands 114
 Night-time Telescopes on Tenerife 114
 Night-time Telescopes on La Palma 118
 Solar Telescopes 125
 6.2 Calar Alto 128
Contents

7 European Southern Observatory 131
 7.1 La Silla 131
 European Southern Observatory’s Early Telescopes 131
 National Telescopes on La Silla 140
 ESO’s New Technology Telescope 144
 La Silla Today 145
 7.2 Cerro Paranal 146
 The VLT 146
 VISTA 162
 VLT Survey Telescope (VST) 164
 7.3 OWL and the E-ELT 166

8 Mauna Kea Observatory 175
 8.1 Introduction 175
 8.2 Canada-France-Hawaii (CFH) Telescope 178
 8.3 NASA InfraRed Telescope Facility (IRTF) 179
 8.4 United Kingdom InfraRed Telescope (UKIRT) 180
 8.5 Subaru 181
 8.6 The Kecks and Gemini North 183
 8.7 Environmental and Other Concerns 184

9 Australian Optical Observatories 189
 9.1 Mount Stromlo, the Early Years 189
 9.2 Siding Spring
 Anglo-Australian Observatory 193
 Advanced Technology Telescope 201
 9.3 Bushfires on Mount Stromlo 202
 9.4 Optical Interferometers 204

10 Mount Hopkins’ Whipple Observatory and the MMT 207

11 Apache Point Observatory 216
 11.1 ARC 3.5 m Telescope 216
 11.2 Sloan Digital Sky Survey (SDSS) 220
 11.3 ARC 0.5 m Photometric Telescope 227
 11.4 NMSU One-Meter Telescope 227

12 Carnegie Southern Observatory (Las Campanas) 229
 12.1 Irénée du Pont Telescope 231
 12.2 Giant Magellan Telescope 232
Contents

13 Mount Graham International Optical Observatory 238
 13.1 Vatican Advanced Technology Telescope (VATT) 238
 13.2 Columbus Project or Large Binocular Telescope (LBT) 239

14 Modern Optical Interferometers 244
 14.1 Mount Wilson 244
 Berkeley Infrared Spatial Interferometer (ISI) 244
 Center for High Angular Resolution Astronomy (CHARA) 245
 14.2 Interferomètre à 2 Télescopes (I2T) 246
 14.3 Cambridge Optical Aperture Synthesis Telescope (COAST) 247
 14.4 Infrared/Optical Telescope Array (IOTA) 248
 14.5 Palomar Testbed Interferometer 249
 14.6 Navy Prototype Optical Interferometer 250

15 Solar Observatories 254
 15.1 Climax Observatory and the Sacramento Peak Solar Observatory 254
 15.2 Big Bear Solar Observatory 257
 15.3 The GONG Helioseismology Network 259

Part 2 Radio Observatories

16 Australian Radio Observatories 263
 16.1 Early Australian Radio Astronomy 263
 Solar Observations 263
 Non-Solar Observations 265
 Other Radiophysics Laboratory Observatory Stations of the Late 1940s 266
 Potts Hill 268
 Badgery’s Creek 271
 Fleurs 272
 Hole-in-the-ground Antenna, Dover Heights 274
 16.2 Parkes Radio Telescope 276
 16.3 Culgoora and the Molonglo Cross 285
 16.4 The Australia Telescope 288
 16.5 The Australian Square Kilometre Array Pathfinder and Murchison Widefield Array 292

17 Cambridge Mullard Radio Observatory 295
 17.1 The Early Years 295
 17.2 Aperture Synthesis 298
 17.3 Modern Instruments 300
Contents

18 Jodrell Bank
 18.1 From Radar to Radio Astronomy 304
 18.2 The 250 ft Mark I 306
 18.3 Later Parabolic Radio Telescopes 315
 18.4 Modifications to the Mark I 319
 18.5 MERLIN 321

19 Early Radio Observatories Away from the Australian–British Axis 326
 19.1 The Soviet Union 326
 - Lebedev Physical Institute’s (LPI’s) Radio Observatory in the Crimea 327
 - Gorki State University’s Radio Observatory 328
 - LPI’s Radio Observatory at Pushchino 329
 - Pulkovo 331
 - RATAN-600 331
 - VLBI 332
 19.2 France 332
 - Nançay 334
 19.3 The Netherlands 338

20 The American National Radio Astronomy Observatory 348
 20.1 AUI Feasibility Study and Early Programme of the 140 ft Telescope 349
 20.2 Role of the NSF in Funding Large Facilities 354
 20.3 Choice of AUI to Manage the National Radio Astronomy Observatory 354
 20.4 The First Radio Telescopes at Green Bank 356
 20.5 Green Bank Interferometer 358
 20.6 The 300 ft and its Replacement 360
 20.7 The 140 ft Telescope 365
 20.8 Millimeter-Wave Telescope 369
 20.9 Very Large Array 373
 20.10 Very Long Baseline Array 379

21 Owens Valley and Mauna Kea 385
 21.1 Owens Valley Radio Observatory 385
 Millimetre Arrays 390
 21.2 Submillimetre Radio Telescopes on Mauna Kea 391
 James Clerk Maxwell Telescope 391
 Caltech Submillimeter Observatory 392
 Smithsonian Submillimeter Array 395
Contents

22 Further North and Central American Observatories 400
 22.1 US Naval Research Laboratory 400
 22.2 MIT Lincoln Laboratory, Millstone Hill and Haystack 403
 22.3 Harvard Radio Astronomy Station, Fort Davis, Texas 408
 22.4 Vermilion River Observatory 410
 22.5 Ohio Transit Radio Telescope 413
 22.6 Arecibo Radio Telescope 415
 22.7 Algonquin Radio Observatory 423
 22.8 Dominion Radio Astrophysical Observatory 425
 22.9 Hat Creek 427
 Allen Telescope Array 428
 22.10 Five College Radio Astronomy Observatory and the
 Mexican–American Large Millimeter Telescope 430

23 Further European and Asian Radio Observatories 438
 23.1 Stockert Observatory and the Effelsberg Radio Telescope 438
 23.2 Chalmers Onsala Space Observatory and the Swedish-ESO
 Submillimetre Telescope (SEST) 444
 23.3 IRAM 447
 23.4 Indian Radio Telescopes 452
 23.5 Nobeyama Observatory 456
 Solar Telescopes 456
 Millimetre-Wave Telescopes 457
 23.6 Heinrich Hertz Submillimeter Telescope 459

24 ALMA and the South Pole 462
 24.1 ALMA 462
 24.2 South Pole 468

Name Index 473
Optical/Infrared Observatory and Telescope Index 478
Radio Observatory and Telescope Index 482
General Index 485
Preface

This book is a history of modern astronomical observatories and their telescopes. As such it covers the history of optical/infrared and radio/microwave observatories and telescopes that have been built since the Second World War. I have tried to cover the most innovative and trend-setting professional facilities and, as a result, I have excluded a discussion of most of the optical observatories established before the war even though some of them were still adding telescopes after 1945. This is because most of their new telescopes, with few exceptions, were not really innovative.

In many ways, the Palomar Observatory can be seen as the last of the major pre-war optical observatories as its first telescope, its 18/26 inch (46/66 cm) Schmidt, was built in the mid 1930s and its two main telescopes, the 200 inch (5.1 m) and the large Palomar (Oschin) Schmidt, were largely designed before the war. So maybe it should be excluded from this book, even though building of its two main telescopes was not completed until the late 1940s. But Palomar designs were innovative in many ways, setting the standards for large optical telescopes and observatories for some time to come. Consequently, I have begun my narrative with a brief outline of the design and development of the Palomar Observatory.

Ground-based astronomical observatories these days consist of more than just optical/infrared and radio/microwave facilities. For example, a number of neutrino, cosmic-ray, gamma-ray and gravity-wave observatories have been built, but I have excluded these to avoid complicating the book. Likewise, I have excluded small professional and large amateur facilities, interesting though many of them are, as this would take the book into completely new territory and make it considerably longer.

Discussing the history of professional astronomical observatories has its challenges as there are so many of them and their histories are often interconnected. It is theoretically possible to consider their history as one large interconnected story, but to produce a readable text I would have had to leave out interesting details.
xii

Preface

which, in my opinion, would have made the book less interesting. So I have taken the alternative approach of considering their histories observatory by observatory whilst pointing out, where appropriate, how their histories are linked. Although this makes the book read a little more like an encyclopedia, I hope it is all the clearer for that enabling me to describe the unique circumstances that have led to the foundation and development of each observatory in turn.