
1 Atomic diffusion on surfaces

One important reason surface diffusion is of interest is that it is so different from
diffusion in bulk solids, and is involved in many important processes – among them
crystal and film growth as well as evaporation, chemical surface reactions, catalysis,
and condensation. However, before becoming intimately involved in the description of
surface events, it will be useful to outline the formalism that describes diffusion on
surfaces.

1.1 Diffusivities: an introduction

To describe diffusion on a crystal surface it is convenient to adapt the procedures
developed for bulk diffusion [1]. The flux J crossing a line of unit length is given by
Fick’s first law

J ¼ �D ∂c=∂x; (1:1)

where ∂c/∂x gives the gradient of the concentration c and D is the diffusivity; the
diffusivity establishes the magnitude of the flux in relation to the gradient, and is
generally given in units of cm2/sec. Establishing a known gradient of the concentration
on a surface, and measuring the flux J are difficult, and it is therefore useful to transform
Eq. (1.1). Consider two parallel lines on a surface, shown in Fig. 1.1, a distance of Δx
apart, which is comparable with the jump length ‘ executed in diffusion. The flux into line
1 will be different from that into line 2, as material accumulates in the region between the
two lines. If the flux is considered per unit length, then

J1 ¼ J2 � ∂J=∂xΔx: (1:2)

The difference in the flux to the two lines can obviously be written as

J1 � J2 ¼ �∂J=∂xΔx; (1:3)

that is in terms of the amount of material accumulated, so that

J1 � J2 ¼ �∂J=∂xΔx ¼ ∂c=∂tΔx: (1:4)

However, from Eq. (1.1) we know that

∂J=∂x ¼ �∂ðD ∂c=∂xÞ=∂x; (1:5)
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and therefore

∂c=∂t ¼ ∂ðD ∂c=∂xÞ=∂x: (1:6)

This is Fick’s second law, more directly applicable to examining surface diffusion. We
will generally consider here diffusion of single atoms over a crystal plane, so that the
diffusivity D will not be a function of the concentration, and Eq. (1.6) can therefore be
written as

∂c=∂t ¼ D ∂2c=∂x2: (1:7)

Note that we have only considered one-dimensional diffusion, with the flux as well as the
gradient along the x-axis, but this will suffice for our problems.

One possible way of looking at diffusion is to deposit a line of ma atoms on a surface,
and to examine how the deposited material spreads out with time. The solution of
Eq. (1.7) for this case is

cðx; tÞ ¼ maffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp � x2

4Dt

� �
; (1:8)

where x is the distance normal to the initial deposit, and t indicates the length of the
diffusion time interval; the solution is shown in Fig. 1.2a. Equation (1.8) can be readily
confirmed by differentiating c(x,t) with respect to both x and t. The boundary conditions
here are that at x= 0, c ! 1 and for |x| > 0 as t ! 0; c ! 0.

If instead of just a line, a part of the entire crystal surface can be covered with adsorbed
material, as in Fig. 1.2b; boundary conditions now are that with the border of material at
x = 0, c= co for x > 0, and c= 0 for x < 0, both with t= 0. The covered region can be
considered as an array of adjacent lines at a separation z. We just integrate the answer in
Eq. (1.8) to give

cðx; tÞ ¼ coffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
ð1
0

exp �ðx� zÞ2
4Dt

" #
dz: (1:9)

If we let u ¼ x� zffiffiffiffiffiffiffiffi
4Dt

p , then

∆x

1 2 x

Γ

Γ

Fig. 1.1 Schematic illustrating atomic jumps at rate Γ per atom in surface diffusion. Jump length = ‘.
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cðx; tÞ ¼ coffiffiffi
π

p
ð xffiffiffiffi

4Dt
p

�1
exp �u2

� �
du: (1:10)

Inasmuch as the error function is given by

erf xð Þ ¼ 2ffiffiffi
π

p
ðx
0

exp �u2
� �

du; (1:11)

and erf(−1) = −1, the solution can be more simply written as

cðx; tÞ ¼ co
2

1þ erf
xffiffiffiffiffiffiffiffi
4Dt

p
� �� �

: (1:12)

Spreading will yield a gradually diminishing boundary region, as shown in Fig. 1.2b.
An alternative geometry for observing atomic diffusion is to deposit a circular spot

containing ma atoms and to study spreading from it. The solution to the diffusion
equation then is

c Rr; tð Þ ¼ ma

4πDt
exp � Rr

4Dt

2� �
; (1:13)

where Rr gives the distance from the center of the original deposit.
As a final example, consider the spreading of a deposit from the front of a ribbon of

width d to the initially clean back. In this finite systemwe have the initial condition that at
t= 0, c= co for 0 < x < d, and c= 0 for d < x <w, wherew > d. The solution to the diffusion
equation under these circumstances, given by Barrer [2], is

cðx; tÞ ¼ co
d

w
þ 2

π

X1
n¼1

1

n
sin

nπd

w
cos

nπx

w
exp � n2π2

w2
Dt

� �� 	
: (1:14)
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Fig. 1.2 Concentration profiles established in diffusion for different mean-square displacements. (a)
Spreading from an initial straight-line deposit. (b) Spreading out of a half-covered surface.
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By measuring the spreading as a function of time and position, values of c(x,t) can be
established experimentally. The diffusivity is then obtained by fitting the appropriate
solution to the measured concentration profile. It is clear that here we have covered only
the simplest examples useful in studies of surface diffusion. More complicated ones are
described by Crank [1]. It should also be noted that under many conditions these
approaches are not at all easy to implement.

With a value of the diffusivity in hand, the question arises immediately how to
interpret the diffusivity D in terms of the atomic jump processes. We follow here the
approach pioneered by Einstein [3]. Consider a surface of unit width, with a uniform
concentration gradient in the x direction. Atoms jump in the x direction at the rate Γ
per atom, and in the –x direction at the same rate. We now draw two lines perpendi-
cular to the x-axis as was done in Fig. 1.1; the second is separated from the first by a
distance equal to the jump length ‘ executed by an atom in diffusion. The rate at
which atoms cross line 1 is m1Γ, and line 2 is m2Γ where m1 and m2 are the number of
atoms per unit length. The net rate at which atoms are transferred to the right will be
given by

m1G�m2G ¼ Gðm1 �m2Þ; (1:15)

that is, the flow to the right from line 1 is compensated to some extent by the flow to the
left from line 2. The number of atoms ma can be related to the surface concentration by
ma= c‘, so that the net flux J becomes

J ¼ ðc1 � c2Þ‘G: (1:16)

Now c1 = c2 – ‘∂c=∂x, so that

J ¼ �‘2G∂c=∂x: (1:17)

From Eq. (1.1) it follows that

D ¼ G‘2; (1:18)

and we see that the diffusivity is just given by the product of the jump rate Γ per atom in
one direction times the square of the jump length. For a more realistic view of diffusion, ‘
should of course be taken as the square root of the average of the squares of the individual
displacements.

For the jump rate Γ per atom that has entered here we can write the expression
available from transition state theory for the rate of overcoming a potential barrier of
height W [4],

G ¼ ν exp � W

kT

� �
; (1:19)

where ν accounts for the vibrational frequencies of the system, known also as attempt
frequency. The diffusivity D can therefore be written as

D ¼ ν‘2 exp � W

kT

� �
: (1:20)
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HereW is really a free energy change ΔF between the top of the potential and the atom in
its equilibrium position, but confined to a plane perpendicular to the diffusion path. Since
ΔF = ΔE – TΔS, the diffusivity becomes

D ¼ ν‘2 exp
ΔSD

k

� �
exp �ΔED

kT

� �
: (1:21)

The usual approximation is that ν, ‘, and ΔSD are not strongly dependent upon the
temperature T, so that a plot of ln (D) versus 1/Twill provide us with ΔED, the activation

energy for diffusion, as the slope and the logarithm of ν‘2 exp
ΔSD

k

� �
as the y-intercept

of the diffusivity D, with ΔSD as the change in the entropy in diffusion. It is customary to
write

ν exp
ΔSD

k

� �
¼ ν0 (1:22)

as we often have some idea about the expected jump length ‘, and D can be more briefly
written as

D ¼ Do exp �ΔED

kT

� �
; with Do ¼ ν0‘

2: (1:23)

where Do is known as the prefactor for the diffusivity.
A somewhat different formulation has been offered by Kürpick et al. [5], who

considered the transfer of an otherwise unconstrained atom from a normal site to the
top of the barrier peak, where the degree of freedom in the direction of diffusion is
withdrawn from the free energy. She arrived at an expression for the diffusivity as

D ¼ Do exp �Δ�
kT

� �
; (1:24)

where Δ� is the difference in the structural energy of the system between the barrier peak
and the normal minimum. The prefactor, itself a function of the temperature T, is given by

Do ¼ kT

h
‘2 exp

ΔSvib

k

� �
exp �ΔEvib

kT

� �
: (1:25)

Here ΔSvib and ΔEvib give the difference between the peak maximum and the minimum
in vibrational contributions to the entropy and the internal energy, which have been
evaluated by Kürpick [6].

It is useful to establish another connection between diffusivity and jump length, as the
standard approaches for evaluating diffusivities are often difficult to carry out. We
therefore evaluate the distance covered by a long sequence of N transitions, where
N = 2Γt. If transition i gives a vector displacement xi, then the overall displacement
x(N) will be

xðNÞ ¼ x1 þ x2 þ x3 þ � � � þ xN ¼
XN

i¼1
xi: (1:26)
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On squaring the above we get

x2ðNÞ ¼
XN

i¼1
x2i þ 2

XN�j

i¼1

XN�1

j¼1
xixiþj: (1:27)

Averaging x2 Nð Þ causes the second term on the right to disappear: in a random displace-
ment there is no relation between one jump and the next, so positive and negative
transitions are equally probable. The mean-square displacement therefore becomes

x2ðNÞ
 � ¼ XN

i¼1
x2i ¼ N‘2; (1:28)

where the mean-square jump length ‘2 is given by

‘2 ¼ 1

N

XN

i¼1
x2i : (1:29)

That is, the mean-square displacement is just equal to the total number of jumps times the
square of the jump length.

The same result can be obtained in a slightly different way given by Berg [7] for a
system ofM particles. Consider the x-displacement after n jumps, x nð Þ; this is related to
the displacement that has occurred previously by

xi nð Þ ¼ xi n� 1ð Þ � ‘; (1:30)

where ‘ is the length of the displacement. For the mean value of x nð Þ we obtain

x nð Þh i ¼ 1

M

XM

i¼1
xi n� 1ð Þ � ‘½ � ¼ 1

M

XM

i¼1
xi n� 1ð Þ ¼ xi n� 1ð Þh i: (1:31)

The mean location does not change as the number of steps changes, so that a particle
starting at x ¼ 0 will remain there. The mean value x nð Þh i is therefore zero. For the
square of the displacement we find

x2i nð Þ ¼ x2i n� 1ð Þ � 2‘xi n� 1ð Þ þ ‘2; (1:32)

and the mean-square displacement is given by

x2 nð Þ
 � ¼ 1

M

XN

j¼1
x2j nð Þ ¼ 1

M

XN

j¼1
½x2j n� 1ð Þ � 2‘xj n� 1ð Þ þ ‘2�: (1:33)

However, the second term under the brackets at right disappears, as positive and negative
terms balance out, so that

x2 nð Þ
 � ¼ x2 n� 1ð Þ
 �þ ‘2: (1:34)

When n = 0, x(n) = 0, so that x2 1ð Þ ¼ ‘2, x2 2ð Þ ¼ 2‘2, and x2 nð Þ ¼ n‘2. Therefore,

x2 nð Þ
 � ¼ n‘2; (1:35)

as has already been demonstrated. We have previously shown in Eq. (1.18) that D = Γ‘2;
but xðnÞh i ¼ 0 and it follows from Eq. (1.28) that G‘2 ¼ x2


 �
=2t, so that

Δx2

 � ¼ x2


 �� xh i2¼ 2Dt; (1:36)
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the Einstein relation. In other words, the diffusivity can be derived directly from
measurements of the displacement fluctuation or dispersion <Δx2>.

We are also going to be interested in the atomic jump processes participating in diffusion.
To learn more about these involves just a slight extension – looking in detail at the
distribution of atomic displacements. This will be done in various ways in what follows.

1.2 Distribution of atomic displacements

With diffusivities known frommeasured displacementfluctuations, what canwe learn about
the atomic jumps contributing to diffusion over a crystal surface? To pursue this question,
we will adopt a more detailed view, and explicitly consider diffusion as arising from the
movement of atoms or particles; this will involve us in a little more elementarymathematics.

1.2.1 Binomial distributions

Assume that a particle makes a total of N independent, uncorrelated steps, each of length
‘ along an infinite straight line [8]. All jumps take place at the same time interval. We seek
the probability px that the particle, having started at the origin, will end at position x ¼ s‘,
but for the sake of simplicity we will assume the nearest-neighbor jump length to be
unity. If the probability of a jump to the right is p and that for a jump to the left is q, then
the likelihood of one configuration of n1 jumps to the right and N� n1 to the left is
pn1qN�n1 . Note that pþ q ¼ 1. How many different independent configurations are there
for reaching the endpoint s‘?

The first jump can be assigned in N ways on an empty line, the second in N − 1, and so
on. In total we therefore have N! different choices. However, the selections for the n1
steps to the right all lead to the same result, and there are n1! different arrangements for
such steps. The same can be said about the N− n1 steps to the left, which can be picked in
(N− n1)! different ways giving the same effect. The total number of different configura-
tions is therefore

N!

n1! N� n1ð Þ! : (1:37)

The probability of reaching the point s after n1 steps to the right becomes

pn1 ¼
N!

n!!ðN� n1Þ! p
n1qN�n1 : (1:38)

From the binomial theorem we know that

ðpþ qÞN ¼
XN
n1¼0

N!

n!!ðN� n1Þ! p
n1qN�n1 : (1:39)

Since p + q = 1, it is clear that the normalization condition

XN
n1¼0

pn1 ¼ 1 (1:40)
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is satisfied. The average number <n1> of jumps to the right is given by

n1h i ¼
XN
n1¼0

n1p
n1

N!

n!!ðN� n1Þ! q
N�n1 : (1:41)

This is easy to evaluate if we remember that

n1p
n1 ¼ p

∂
∂p

pn1 ; (1:42)

so that

n1h i ¼
XN
n1¼0

p
∂
∂p
pn1

N!

n!!ðN� n1Þ! q
N�n1 : (1:43)

On interchanging the order of summation and differentiation, we have

n1h i ¼ p
∂
∂p

XN
n1¼0

pn1
N!

n!!ðN� n1Þ! q
N�n1 : (1:44)

Taking advantage of the binomial theorem we find that

n1h i ¼ p
∂
∂p

ðpþ qÞN ¼ Npðpþ qÞN�1 ¼ Np; (1:45)

and for the average number n2h i of jumps to the left

n2h i ¼ N� n1h i ¼ Nð1� pÞ ¼ Nq: (1:46)

For the mean of the second power of the number of jumps to the right, n21

 �

, we proceed
in an analogous fashion.

n21

 � ¼ p

∂
∂p

pNðpþ qÞN�1 ¼ p Nðpþ qÞN�1 þ pNðn� 1Þðpþ qÞN�2
h i

(1:47)

and

n21

 � ¼ Npðqþ npÞ: (1:48)

For the fluctuation of n1 we therefore find

Δn21

 � ¼ n1 � n1h ið Þ2

D E
¼ Npðqþ npÞ �N2p2 ¼ Npq: (1:49)

We now have many of the interesting quantities for the number of steps n1 to the right.
The value of the position x with ‘o unity is given by

x ¼ n1 � n2 ¼ n1 � ðN� n1Þ ¼ 2n1 �N: (1:50)

If the number of steps n1 to the right is known we also know the position x. The
distribution px of the position x is therefore the same as for jumps to the right, given by
Eq. (1.38). The mean value of x becomes
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xh i ¼ n1h i � n2h i ¼ Nðp� qÞ: (1:51)

For the displacement we have

Δx ¼ x� xh i ¼ 2n1 �N� ð2 n1h i �NÞ ¼ 2ðn� n1h iÞ ¼ 2Δn1 (1:52)

so that for the displacement fluctuation

Δx2

 � ¼ 4Npq: (1:53)

The distribution can also be written more clearly in terms of the displacement x by
taking advantage of Eq. (1.50). This gives

px ¼ N!

Nþ x

2

� �
!

N� x

2

� �
!

p
Nþx
2ð Þq N�x

2ð Þ: (1:54)

When jumps to the right occur with the same probability as to the left this reduces to

px ¼ N!

Nþ x

2

� �
!

N� x

2

� �
!

1

2

� �N

: (1:55)

We now have an expression that gives us the number of jumps N in terms of the measured
displacements, and from Eq. (1.54) we can also find out the jump rates to the left and right.

1.2.2 Approximation for large values of N

When the total number of jumpsN becomes large, evaluation of the probability pn1 given
by Eq. (1.38) requires more work, but an approximation can be reached readily. For large
values ofN, the probability pn1 at the maximum becomes large and n1 also assumes quite
a large value. The condition for the maximum is readily derived by operating on the
logarithm of the probability, which is less sensitive to n1,

lnðpn1Þ ¼ lnðNÞ!� lnðn1Þ!� lnðN� n1Þ!þ n1 lnðpÞ þ ðN� n1Þ lnðqÞ: (1:56)

The necessary condition for the maximum is

d lnðpn1Þ
dn1

¼ 0: (1:57)

For large values of N, we can resort to Stirlings approximation lnðNÞ! � N lnðNÞ �N,
so that

d lnðNÞ!
dN

¼ lnðNÞ (1:58)

and from Eq. (1.54) we find

d lnðpn1Þ
dn1

¼ � lnðn1Þ þ lnðN� n1Þ þ lnðpÞ � lnðqÞ ¼ 0: (1:59)
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It follows that

ln
N�5n14ð Þp½ �
5n14q

� �
¼ 0; (1:60)

where 5n14 is the value of n1 at the maximum. Now

N� n1h ið Þp ¼ n1h iq (1:61)

so that

Np ¼ n1h iðpþ qÞ (1:62)

and, since pþ q ¼ 1,

n1h i ¼ Np; (1:63)

which agrees with the result already obtained for the binomial distribution in Eq. (1.45).
We can expand the logarithm of the probability pn1 around the maximum as

lnðpn1Þ ¼ lnðp n1h iÞ þ d lnðpÞ
dn1

Δn1 þ 1

2

d 2 lnðpÞ
dn21

Δn21 þ � � �: (1:64)

The derivatives are all evaluated at the maximum so that the first derivative vanishes, and
for the second we get from Eq. (1.59)

d 2 lnðpÞ
dn21

¼ � 1

n1
� 1

N� n1
¼ � N

n1ðN� n1Þ : (1:65)

At the peak, n1h i ¼ Np and N� n1h i ¼ Nð1� pÞ ¼ Nq, so that

d 2 lnðpÞ
dn21

¼ � N

NpNq
¼ � 1

Npq
: (1:66)

Note that the second derivative is negative as it must be at a maximum. Inserting the
above result into Eq. (1.64) we obtain

lnðpn1Þ ¼ lnðp n1h iÞ � 1

2

Δn21
Npq

(1:67)

and

pn1 ¼ B exp � Δn21
2Npq

� �
; (1:68)

where B = p n1h i is just a constant of proportionality. Now the normalization requires thatð1
�1

pn1dn1 ¼ 1 (1:69)

so we obtain

B

ð1
�1

exp � Δn21
2Npq

� �
dn1 ¼ 1: (1:70)
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