REPORTING RESULTS

This brief guide is ideal for science and engineering students and professionals to help them communicate technical information clearly, accurately, and effectively. The focus is on the most common communication forms, including laboratory reports, research articles, and oral presentations, and on common issues that arise in classroom and professional practice. This book will be especially useful to students in a first chemistry or physics laboratory course. Advanced courses will often use the same formatting as is required for submission to technical journals or for technical report writing, which is the focus of this book. Good communication skills are required in all forms of technical writing and presentation. This book is designed to help the reader develop effective communication skills. It is also an ideal reference on stylistic and grammar issues. Unlike most texts, which concentrate only on writing style, this book also treats oral presentations, graphing, and analysis of data.

David C. Van Aken is a Professor of Materials Science and Engineering at the Missouri University of Science and Technology. Dr. Van Aken is a licensed Professional Engineer in the states of Missouri and Illinois. He is the author of more than 70 technical articles. He joined the Missouri University of Science and Technology faculty in 1993 after having taught at the University of Michigan for seven years. Dr. Van Aken has been the recipient of 12 awards for teaching excellence, 4 Missouri S&T faculty excellence awards, and a Missouri S&T Alumni Association outstanding advising award. In 2006 he was designated a Dean’s Teaching Scholar. Dr. Van Aken began his engineering career in 1978 at Caterpillar, Inc., as a materials engineer and returned in 1982 to the University of Illinois for his Ph.D. studies. Dr. Van Aken is the recipient of the NSF Presidential Young Investigator Award and the Office of Naval Research Young Investigator Award. His research interests include the physical metallurgy of ferrous alloys, experimental and theoretical aspects of phase transformations, and the mechanical behavior of structural materials.

William F. Hosford is a Professor Emeritus of Materials Science and Engineering at the University of Michigan. He is the author of more than 80 technical articles and a number of books, including the leading-selling *Metal Forming: Mechanics and Metallurgy*, third edition (with R. M. Caddell) (Cambridge 2007); *Materials Science: An Intermediate Text* (Cambridge 2006); *Mechanical Behavior of Materials* (Cambridge 2005); *Mechanics of Crystals and Textured Polycrystals* (1993); *Mechanical Metallurgy* (2005); and the forthcoming *Materials for Engineers*, an undergraduate textbook. Professor Hosford’s research interests include explorations into the quantitative relationship between anisotropic yielding behavior and crystallographic texture, sheet metal forming and the dependence of sheet formability on plastic anisotropy, and the formation of deformation textures in body-centered cubic metals, as well as the spheroidization of medium carbon steels.
Reporting Results

A PRACTICAL GUIDE FOR ENGINEERS AND SCIENTISTS

David C. Van Aken
Missouri University of Science and Technology

William F. Hosford
University of Michigan
Contents

Preface
Elements of Technical Writing
Technical Papers
Technical Letters
Oral Presentations
Presentation of Technical Data
Statistical Analysis of Experimental Data
Resumé Writing

Appendix I: COMMON ERRORS IN WRITING
Appendix II: PUNCTUATION
Appendix III: COMMON WORD ERRORS
Contents

Appendix IV: INTERNATIONAL SYSTEM OF
PREFIXES AND UNITS.. 137

Appendix V: THE GREEK ALPHABET AND
TYPICAL USES.. 139

Appendix VI: STRAIGHT-LINE PLOTS FOR
SOME MATHEMATICAL FUNCTIONS......................... 141

References 145
Index 147
Preface

This brief guide was written for science and engineering students and professionals to help them communicate technical information clearly, accurately, and effectively. The focus is on the most common communication forms and the most common issues that arise in classroom and professional practice.

Freshman chemistry or physics will be the introduction to technical report writing for many college students. The format for writing these laboratory reports is most often specified by the instructor. This guide will be useful in developing a good technical writing style and for preparing tables and figures for those reports. Upper-level courses often use the same formatting as is required for submission to technical journals or for technical report writing, which is the focus of this book. Graduate students and professionals encounter many of the same problems
in technical communication. Good communication skills are required in all forms of technical writing and presentation. This book is designed to help the reader develop effective communication skills and to be a reference on stylistic and grammar issues. Unlike most texts on writing style, this book also treats oral presentations, graphing, and analysis of data.

The authors’ intention is to give the reader the basics of technical communication in the first chapter and then to treat in detail the various forms of technical communication. The structure of the book is as follows:

Chapter 1 provides a general discussion of technical communication.
Chapter 2 covers writing technical reports and archival papers.
Chapter 3 discusses writing letter reports, which are common in industry.
Chapter 4 gives general guidelines for oral presentations.
Chapter 5 treats the effective use of tables and figures, with an emphasis on the science of graphing.
Chapter 6 covers some basic concepts in the statistical analysis of data.
Chapter 7 offers suggestions for writing resumés.
Preface

The appendices treat common errors in writing, including punctuation and commonly confused words; general information, including the international system of numerical prefixes and units and the Greek alphabet; and uses of straight lines to represent some mathematical functions.

This guide is intended for all science and engineering majors. The careful reader may notice that many of the examples are taken from the authors’ experiences in materials science and engineering.

Clear communication is a challenge that often does not appeal to engineers and scientists. However, the responsibility of ethical scientists and engineers is to ensure that humanity benefits from their knowledge. If one is unable to communicate one’s ideas effectively, then for all practical purposes the work is lost. Academic grades and future careers are dependent on good communication skills. Becoming a good writer is a lifelong journey, and the authors hope that this book provides a quick reference for readers in both their academic and their professional careers.
REPORTING RESULTS