The Biology of Oligodendrocytes

Traditionally, oligodendrocytes have been considered to play a supporting role in the central nervous system and their importance has generally been overlooked. For the first time, this book provides a dedicated review of all of the major aspects of oligodendrocyte biology, including development, organization, genetics, and immunobiology. Later chapters emphasize the importance of this often overlooked cell to the mammalian central nervous system by exploring the role of its primary function, myelin synthesis and maintenance, in neural disease and repair. Particular attention is paid to multiple sclerosis, arguably the prime example of an acquired demyelinating disease, with detailed examinations of the current concepts regarding demyelination, oligodendroglial damage, and remyelination in multiple sclerosis lesions.

PATRICIA J. ARMATI is an Associate Professor of Neuroscience and Co-Director of the Nerve Research Foundation, Sydney Medical School at the University of Sydney, Australia. She has a long-standing interest in the cells of the nervous system and their relationship to disease and is editor of The Biology of Schwann Cells (Cambridge, 2007).

EMILY K. MATHYE is a postdoctoral scientist at the Brain and Mind Research Institute at the University of Sydney. She has a keen interest in both immunology and neurobiology with particular emphasis on pathogenic antibody responses in demyelinating disease of the peripheral and central nervous systems.
The Biology of Oligodendrocytes

Edited by
PATRICIA J. ARMATI
AND
EMILY K. MATHEY
The University of Sydney,
Australia
This book is dedicated to Jonathon Pembroke and Jarrod Glasson.
Contents

Preface page ix
Contributors xi

1 CNS oligarchs; the rise of the oligodendrocyte in a neuron-centric culture 1
EMILY K. MATHEY, ARIEL ARTHUR AND PATRICIA J. ARMATI

2 Comparative biology of Schwann cells and oligodendrocytes 19
RUDOLF MARTINI, JANOS GROH AND UDO BARTSCH

3 Control of oligodendrocyte development and myelination in the vertebrate CNS 49
ROBERT H. MILLER

4 Molecular organization of the oligodendrocyte and myelin 64
GRAHAME KIDD AND BRUCE D. TRAPP

5 The genetics of oligodendrocytes 103
JOSEPH A. NIELSEN, PIERRE LAU AND LYNN D. HUDSON

6 Immunobiology of the oligodendrocyte 115
DAVID KREMER, ORHAN AKTAS, HANS-PETER HARTUNG AND PATRICK KÜRY

7 Oligodendrocytes and disease: repair, remyelination and stem cells 137
NEIL J. SCOLDING

8 Glial progenitor cells and the dynamics of the oligodendrocyte and its myelin in the aged and injured CNS 154
JURATE LASIENE AND PHILIP J. HORNER

vii
Contents

9 Oligodendrogial pathology in multiple sclerosis  
TANJA KUHLMANN AND WOLFGANG BRÜCK  
171

10 Glutamate receptors, transporters and periventricular  
leukomalacia  
TARA M. DESILVA AND PAUL A. ROSENBERG  
186

References  
202

Index  
278

The color plate section can be found between pages 114 and 115.
Preface

For a long time neurons have blinded neuroscientists with their dazzling array of impulses and synapses. In thrall to these complex neural networks neuroscientists have often concentrated almost exclusively on neurons while the role of the macroglia - the oligodendrocytes and astrocytes - has remained in the shadows. We hope that this book will present a more integrated view of the relationship between oligodendrocytes and neurons and the critical role both cell types play in the central nervous system (CNS).

We aim to set out major aspects of the biology of the oligodendrocyte - a very large, very complex and dynamic cell - highlighting its extraordinarily unique organization and its multiple functions. For example, each oligodendrocyte can produce a plethora of up to 50 elongated paddle-like processes, each of which spirals around an internode of a different CNS axon. This spiraling process forms the compacted myelin lamellae and the associated uncompacted inner mesaxon, lateral paranodal regions and the outer mesaxons so often overlooked. The metabolic requirements and maintenance of such an elaborate organization of membranes depend on the uncompacted and compacted myelin compartments remaining in continuity. This continuity is achieved via the transverse processes and Schmidt–Lanterman incisures and ensures that vital cytoplasmic components have access to the compact myelin membranes. The orchestration of oligodendrocyte interaction with the neurons and other CNS cells is dependent on the precision of developmental processes including cell division, differentiation and migration to exact locations. Damage to this organization or an
Preface

individual cell type is a major focus of medical research because of the serious consequences of any perturbation of the CNS. We thank Dr. Martin Griffiths, CUP, for his assistance, Professor John Prineas and Dr. Michael Barnett for review of Chapter 9 and all our colleagues who assisted us in the production of this book.
Contributors

Orhan Aktas M. D.
Professor, Heinrich-Heine-Universität, Department of Neurology,
Moorenstrasse 5, Dusseldorf, 40225, Germany

Patricia J. Armati Ph.D.
Associate Professor, Brain and Mind Research Institute, The
University of Sydney, 94 Mallett Street, Camperdown 2050,
NSW Australia

Ariel Arthur Ph.D.
Clinical Neurosciences, Glasgow Biomedical Research Centre,
The University of Glasgow, 120 University Place, Glasgow, G12
8TA, Scotland, UK

Udo Bartsch Ph.D.
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum
Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg,
Germany

Wolfgang Brück M. D.
Department of Neuropathology, University Medical Center,
Göttingen, Germany; Institute for Multiple Sclerosis Research,
Hertie Foundation and University Medical Center, Göttingen,
Germany

Tara M. DeSilva Ph.D.
Instructor of Neurology, Department of Neurology and The
F. M. Kirby Neurobiology Center, Children’s Hospital and
Harvard Medical School, 300 Longwood Avenue, Boston,
MA 02115, USA
List of contributors

Janos Groh
Section of Developmental Neurobiology, Neurologische Klinik der Universität, Josef-Schneider-Str. 11, 97080 Würzburg, Germany

Hans-Peter Hartung M.D.
Professor and Chair of Neurology, Heinrich-Heine-Universität, Department of Neurology, Moorenstrasse 5, Dusseldorf, 40225, Germany

Philip J. Horner Ph.D.
Associate Professor of Neurosurgery, University of Washington, Institute for Stem Cell and Regenerative Medicine, Box 358056, Seattle, WA 98195–8056, USA

Lynn D. Hudson Ph.D.
Developmental Genetics Section, Building 49, Room 5A82, 49 Convent Drive, MSC 4479, Bethesda, MD 20892–4479, USA

Grahame Kidd Ph.D.
Department of Neurosciences, Lerner Research Institute – NC30, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA

David Kremer M.D.
Heinrich-Heine-Universität, Department of Neurology, Moorenstrasse 5, Dusseldorf, 40225, Germany

Tanja Kuhlmann M.D.
Universitätsmedizin der Georg-August-Universität, Göttingen, Abteilung Neuropathologie, Robert-Koch-Strasse 40, 37075 Göttingen, Germany

Patrick Köry Ph.D.
Heinrich-Heine-Universität, Department of Neurology, Moorenstrasse 5, Dusseldorf, 40225, Germany

Jurate Lasienė
Department of Neurological Surgery, University of Washington, Seattle, WA, USA

Pierre Lau Ph.D.
Section of Developmental Genetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
List of contributors

Rudolf Martini Ph.D.
Professor and Chairman of the Section of Developmental Neurobiology, Neurologische Klinik der Universität, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany

Emily K. Mathey Ph.D.
Brain and Mind Research Institute, The University of Sydney, 94 Mallet St, Camperdown, NSW 2050, Australia

Robert H. Miller Ph.D.
Professor, Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA

Joseph A. Nielsen Ph.D.
Section of Developmental Genetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

Paul A. Rosenberg M.D. Ph.D.
Senior Associate in Neurology and Associate Professor of Neurology, Department of Neurology, Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA

Neil J. Scolding, F.R.C.P. Ph.D.
Burden Professor of Clinical Neurosciences, Institute of Clinical Neurosciences, University of Bristol, Department of Neurology, Frenchay Hospital, Bristol BS16 1LE, UK

Bruce D. Trapp Ph.D.
Chairman, Department of Neurosciences, Lerner Research Institute - NC30, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA