
HANDBOOK OF PRACTICAL LOGIC
AND AUTOMATED REASONING

John Harrison

The sheer complexity of computer systems has meant that automated rea-
soning, i.e. the use of computers to perform logical inference, has become
a vital component of program construction and of programming language
design. This book meets the demand for a self-contained and broad-based
account of the concepts, the machinery and the use of automated reasoning.
The mathematical logic foundations are described in conjunction with their
practical application, all with the minimum of prerequisites.

The approach is constructive, concrete and algorithmic: a key feature is
that methods are described with reference to actual implementations (for
which code is supplied) that readers can use, modify and experiment with.

This book is ideally suited for those seeking a one-stop source for the gen-
eral area of automated reasoning. It can be used as a reference, or as a place
to learn the fundamentals, either in conjunction with advanced courses or
for self study.

John Harrison is a Principal Engineer at Intel Corporation in Portland,
Oregon. He specialises in formal verification, automated theorem proving,
floating-point arithmetic and mathematical algorithms.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


HANDBOOK OF PRACTICAL LOGIC

AND AUTOMATED REASONING

JOHN HARRISON

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


cambridge univers ity press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521899574

c© J. Harrison 2009

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-89957-4 hardback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or

third-party internet websites referred to in this publication,
and does not guarantee that any content on such

websites is, or will remain, accurate or appropriate.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


To Porosusha

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


When a man Reasoneth, hee does nothing else but conceive a summe totall, from
Addition of parcels.

For as Arithmeticians teach to adde and substract in numbers; so the Geome-
tricians teach the same in lines, figures (solid and superficiall,) angles, proportions,
times, degrees of swiftnesse, force, power, and the like; The Logicians teach the
same in Consequences of words; adding together two Names, to make an Affirma-
tion; and two Affirmations, to make a Syllogisme; and many Syllogismes to make a
Demonstration; and from the summe, or Conclusion of a Syllogisme, they substract
one Proposition, to finde the other.

For REASON, in this sense, is nothing but Reckoning (that is, Adding and Sub-
stracting) of the Consequences of generall names agreed upon, for the marking and
signifying of our thoughts.

And as in Arithmetique, unpractised men must, and Professors themselves may
often erre, and cast up false; so also in any other subject of Reasoning, the ablest,
most attentive, and most practised men, may deceive themselves and inferre false
Conclusions; Not but that Reason it selfe is always Right Reason, as well as Arith-
metique is a certain and infallible Art: But no one mans Reason, nor the Reason of
any one number of men, makes the certaintie; no more than an account is therefore
well cast up, because a great many men have unanimously approved it.

Thomas Hobbes (1588–1697), ‘Leviathan, or The Matter,
Forme, & Power of a Common-Wealth Ecclesiasticall and Civill’.

Printed for ANDREW CROOKE, at the Green Dragon
in St. Pauls Church-yard, 1651.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Contents

Preface page xi

1 Introduction 1
1.1 What is logical reasoning? 1
1.2 Calculemus! 4
1.3 Symbolism 5
1.4 Boole’s algebra of logic 6
1.5 Syntax and semantics 9
1.6 Symbolic computation and OCaml 13
1.7 Parsing 16
1.8 Prettyprinting 21

2 Propositional logic 25
2.1 The syntax of propositional logic 25
2.2 The semantics of propositional logic 32
2.3 Validity, satisfiability and tautology 39
2.4 The De Morgan laws, adequacy and duality 46
2.5 Simplification and negation normal form 49
2.6 Disjunctive and conjunctive normal forms 54
2.7 Applications of propositional logic 61
2.8 Definitional CNF 73
2.9 The Davis–Putnam procedure 79
2.10 St̊almarck’s method 90
2.11 Binary decision diagrams 99
2.12 Compactness 107

3 First-order logic 118
3.1 First-order logic and its implementation 118
3.2 Parsing and printing 122
3.3 The semantics of first-order logic 123

vii

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


viii Contents

3.4 Syntax operations 130
3.5 Prenex normal form 139
3.6 Skolemization 144
3.7 Canonical models 151
3.8 Mechanizing Herbrand’s theorem 158
3.9 Unification 164
3.10 Tableaux 173
3.11 Resolution 179
3.12 Subsumption and replacement 185
3.13 Refinements of resolution 194
3.14 Horn clauses and Prolog 202
3.15 Model elimination 213
3.16 More first-order metatheorems 225

4 Equality 235
4.1 Equality axioms 235
4.2 Categoricity and elementary equivalence 241
4.3 Equational logic and completeness theorems 246
4.4 Congruence closure 249
4.5 Rewriting 254
4.6 Termination orderings 264
4.7 Knuth–Bendix completion 271
4.8 Equality elimination 287
4.9 Paramodulation 297

5 Decidable problems 308
5.1 The decision problem 308
5.2 The AE fragment 309
5.3 Miniscoping and the monadic fragment 313
5.4 Syllogisms 317
5.5 The finite model property 320
5.6 Quantifier elimination 328
5.7 Presburger arithmetic 336
5.8 The complex numbers 352
5.9 The real numbers 366
5.10 Rings, ideals and word problems 380
5.11 Gröbner bases 400
5.12 Geometric theorem proving 414
5.13 Combining decision procedures 425

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Contents ix

6 Interactive theorem proving 464
6.1 Human-oriented methods 464
6.2 Interactive provers and proof checkers 466
6.3 Proof systems for first-order logic 469
6.4 LCF implementation of first-order logic 473
6.5 Propositional derived rules 478
6.6 Proving tautologies by inference 484
6.7 First-order derived rules 489
6.8 First-order proof by inference 494
6.9 Interactive proof styles 506

7 Limitations 526
7.1 Hilbert’s programme 526
7.2 Tarski’s theorem on the undefinability of truth 530
7.3 Incompleteness of axiom systems 541
7.4 Gödel’s incompleteness theorem 546
7.5 Definability and decidability 555
7.6 Church’s theorem 564
7.7 Further limitative results 575
7.8 Retrospective: the nature of logic 586

Appendix 1 Mathematical background 593
Appendix 2 OCaml made light of 603
Appendix 3 Parsing and printing of formulas 623
References 631
Index 668

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Preface

This book is about computer programs that can perform automated rea-
soning. I interpret ‘reasoning’ quite narrowly: the emphasis is on formal
deductive inference rather than, for example, poker playing or medical diag-
nosis. On the other hand I interpret ‘automated’ broadly, to include inter-
active arrangements where a human being and machine reason together,
and I’m always conscious of the applications of deductive reasoning to real-
world problems. Indeed, as well as being inherently fascinating, the subject
is deriving increasing importance from its industrial applications.

This book is intended as a first introduction to the field, and also to logical
reasoning itself. No previous knowledge of mathematical logic is assumed,
although readers will inevitably find some prior experience of mathemat-
ics and of computer programming (especially in a functional language like
OCaml, F#, Standard ML, Haskell or LISP) invaluable. In contrast to the
many specialist texts on the subject, this book aims at a broad and balanced
general introduction, and has two special characteristics.

• Pure logic and automated theorem proving are explained in a closely intertwined
manner. Results in logic are developed with an eye to their role in automated
theorem proving, and wherever possible are developed in an explicitly computa-
tional way.

• Automated theorem proving methods are explained with reference to actual con-
crete implementations, which readers can experiment with if they have convenient
access to a computer. All code is written in the high-level functional language
OCaml.

Although this organization is open to question, I adopted it after care-
ful consideration, and extensive experimentation with alternatives. A more
detailed self-justification follows, but most readers will want to skip straight
to the main content, starting with ‘How to read this book’ on page xvi.

xi

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


xii Preface

Ideological orientation

This section explains in more detail the philosophy behind the present text,
and attempts to justify it. I also describe the focus of this book and major
topics that I do not include. To fully appreciate some points made in the
discussion, knowledge of the subject matter is needed. Readers may prefer to
skip or skim this material.

My primary aim has been to present a broad and balanced discussion of
many of the principal results in automated theorem proving. Moreover, read-
ers mainly interested in pure mathematical logic should find that this book
covers most of the traditional results found in mainstream elementary texts
on mathematical logic: compactness, Löwenheim–Skolem, completeness of
proof systems, interpolation, Gödel’s theorems etc. But I consistently strive,
even when it is not directly necessary as part of the code of an automated
prover, to present results in a concrete, explicit and algorithmic fashion, usu-
ally involving real code that can actually be experimented with and used,
at least in principle. For example:

• the proof of the interpolation theorem in Section 5.13 contains an algo-
rithm for constructing interpolants, utilizing earlier theorem proving code;

• decidability based on the finite model property is demonstrated in Section
5.5 by explicitly interleaving proving and refuting code rather than a
general appeal to Theorem 7.13.

I hope that many readers will share my liking for this concrete hands-on
style. Formal logic usually involves a considerable degree of care over tedious
syntactic details. This can be quite painful for the beginner, so teachers
and authors often have to make the unpalatable choice between (i) spelling
everything out in excruciating detail and (ii) waving their hands profusely
to cover over sloppy explanations. While teachers rightly tend to recoil from
(i), my experience of teaching has shown me that many students nevertheless
resent the feeling of never being told the whole story. By implementing things
on a computer, I think we get the best of both worlds: the details are there
in precise formal detail, but we can mostly let the computer worry about
their unpleasant consequences.

It is true that mathematics in the last 150 years has become more
abstractly set-theoretic and less constructive. This is particularly so in con-
temporary model theory, where traditional topics that lie at the historical
root of the subject are being de-emphasized. But I’m not alone in swim-
ming against this tide, for the rise of the computer is helping to restore the
place of explicit algorithmic methods in several areas of mathematics. This is

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Preface xiii

particularly notable in algebraic geometry and related areas (Cox, Little and
O’Shea 1992; Schenk 2003) where computer algebra and specifically Gröbner
bases (see Section 5.11) have made considerable impact. But similar ideas
are being explored in other areas, even in category theory (Rydeheard and
Burstall 1988), often seen as the quintessence of abstract nonconstructive
mathematics. I can do no better than quote Knuth (1974) on the merits of
a concretely algorithmic point of view in mathematics generally:

For three years I taught a sophomore course in abstract algebra for mathematics
majors at Caltech, and the most difficult topic was always the study of “Jordan
canonical forms” for matrices. The third year I tried a new approach, by looking
at the subject algorithmically, and suddenly it became quite clear. The same thing
happened with the discussion of finite groups defined by generators and relations,
and in another course with the reduction theory of binary quadratic forms. By
presenting the subject in terms of algorithms, the purpose and meaning of the
mathematical theorems became transparent.

Later, while writing a book on computer arithmetic [Knuth (1969)], I found that
virtually every theorem in elementary number theory arises in a natural, motivated
way in connection with the problem of making computers do high-speed numerical
calculations. Therefore I believe that the traditional courses in number theory might
well be changed to adopt this point of view, adding a practical motivation to the
already beautiful theory.

In the case of logic, this approach seems especially natural. From the
very earliest days, the development of logic was motivated by the desire
to reduce reasoning to calculation: the word logos, the root of ‘logic’, can
mean not just logical thought but also computation or ‘reckoning’. More
recently, it was decidability questions in logic that led Turing and others to
define precisely the notion of a ‘computable function’ and set up the abstract
models that delimit the range of algorithmic methods. This relationship
between logic and computation, which dates from before the Middle Ages,
has continued to the present day. For example, problems in the design and
verification of computer systems are stimulating more research in logic, while
logical principles are playing an increasingly important role in the design of
programming languages. Thus, logical reasoning can be seen not only as
one of the many beneficiaries of the modern computer age, but as its most
important intellectual wellspring.

Another feature of the present text that some readers may find surprising
is its systematically model-theoretic emphasis; by contrast many other texts
such as Goubault-Larrecq and Mackie (1997) place proof theory at the cen-
tre. I introduce traditional proof systems late (Chapter 6), and I hardly men-
tion, and never exploit, structural properties of natural deduction or sequent
calculus proofs. While these topics are fascinating, I believe that all the tra-
ditional computer-based proof methods for classical logic can be presented

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

perfectly well without them. Indeed the special refutation-complete calculi
for automated theorem proving (binary resolution, hyperresolution, etc.)
also provide strong results on canonical forms for proofs. In some situations
these are even more convenient for theoretical results than results from
Gentzen-style proof theory (Matiyasevich 1975), as with our proof of the
Nullstellensatz in Section 5.10 à la Lifschitz (1980). In any case, the details
of particular proof systems can be much less significant for automated rea-
soning than the way in which the corresponding search space is examined.
Note, for example, how different tableaux and the inverse method are, even
though they can both be understood as search for cut-free sequent proofs.

I wanted to give full, carefully explained code for all the methods described.
(In my experience it’s easy to underestimate the difficulty in passing from a
straightforward-looking algorithm to a concrete implementation.) In order
to present real executable code that’s almost as readable as the kind of
pseudocode often used to describe algorithms, it seemed necessary to use
a very high-level language where concrete issues of data representation and
memory allocation can be ignored. I selected the functional programming
language Objective CAML (OCaml) for this purpose. OCaml is a descen-
dant of Edinburgh ML, a programming language specifically designed for
writing theorem provers, and several major systems are written in it.

A drawback of using OCaml (rather than say, C or Java) is that it will be
unfamiliar to many readers. However, I only use a simple subset, which is
briefly explained in Appendix 2; the code is functional in style with no assign-
ments or sequencing (except for producing diagnostic output). In a few cases
(e.g. threading the state through code for binary decision diagrams), imper-
ative code might have been simpler, but it seemed worthwhile to stick to the
simplest subset possible. Purely functional programming is particularly con-
venient for the kind of tinkering that I hope to encourage, since one doesn’t
have to worry about accidental side-effects of one computation on others.

I will close with a quotation from McCarthy (1963) that nicely encapsu-
lates the philosophy underlying this text, implying as it does the potential
new role of logic as a truly applied science.

It is reasonable to hope that the relationship between computation and mathemat-
ical logic will be as fruitful in the next century as that between analysis and physics
in the last.

What’s not in this book

Although I aim to cover a broad range of topics, selectivity was essential to
prevent the book from becoming unmanageably huge. I focus on theories in
classical one-sorted first-order logic, since in this coherent setting many of

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Preface xv

the central methods of automated reasoning can be displayed. Not without
regret, I have therefore excluded from serious discussion major areas such
as model checking, inductive theorem proving, many-sorted logic, modal
logic, description logics, intuitionistic logic, lambda calculus, higher-order
logic and type theory. I believe, however, that this book will prepare the
reader quite well to proceed with any of those areas, many of which are
best understood precisely in terms of their contrast with classical first-order
logic.

Another guiding principle has been to present topics only when I felt
competent to do so at a fairly elementary level, without undue technicali-
ties or difficult theory. This has meant the neglect of, for example, ordered
paramodulation, cylindrical algebraic decomposition and Gödel’s second
incompleteness theorem. However, in such cases I have tried to give ample
references so that interested readers can go further on their own.

Acknowledgements

This book has taken many years to evolve in haphazard fashion into its
current form. During this period, I worked in the University of Cambridge
Computer Laboratory, Åbo Akademi University/TUCS and Intel Corpo-
ration, as well as spending shorter periods visiting other institutions; I’m
grateful above all to Tania and Yestin, for accompanying me on these jour-
neys and tolerating the inordinate time I spent working on this project. It
would be impossible to fairly describe here the extent to which my thinking
has been shaped by the friends and colleagues that I have encountered over
the years. But I owe particular thanks to Mike Gordon, who first gave me
the opportunity to get involved in this fascinating field.

I wrote this book partly because I knew of no existing text that presents
the range of topics in logic and automated reasoning that I wanted to cover.
So the general style and approach is my own, and no existing text can be
blamed for its malign influence. But on the purely logical side, I have mostly
followed the presentation of basic metatheorems given by Kreisel and Kriv-
ine (1971). Their elegant development suits my purposes precisely, being
purely model-theoretic and using the workaday tools of automated theo-
rem proving such as Skolemization and the (so-called) Herbrand theorem.
For example, the appealingly algorithmic proof of the interpolation theorem
given in Section 5.13 is essentially theirs.

Though I have now been a researcher in automated reasoning for almost
20 years, I’m still routinely finding old results in the literature of which I
was previously unaware, or learning of them through personal contact with

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


xvi Preface

colleagues. In this connection, I’m grateful to Grigori Mints for pointing
me at Lifschitz’s proof of the Nullstellensatz (Section 5.10) using resolu-
tion proofs, to Löıc Pottier for telling me about Hörmander’s algorithm for
real quantifier elimination (Section 5.9), and to Lars Hörmander himself for
answering my questions on the genesis of this procedure.

I’ve been very lucky to have numerous friends and colleagues comment on
drafts of this book, offer welcome encouragement, take up and modify the
associated code, and even teach from it. Their influence has often clarified
my thinking and sometimes saved me from serious errors, but needless to say,
they are not responsible for any remaining faults in the text. Heartfelt thanks
to Rob Arthan, Jeremy Avigad, Clark Barrett, Robert Bauer, Bruno Buch-
berger, Amine Chaieb, Michael Champigny, Ed Clarke, Byron Cook, Nancy
Day, Torkel Franzén (who, alas, did not live to see the finished book), Dan
Friedman, Mike Gordon, Alexey Gotsman, Jim Grundy, Tom Hales, Tony
Hoare, Peter Homeier, Joe Hurd, Robert Jones, Shuvendu Lahiri, Arthur van
Leeuwen, Sean McLaughlin, Wojtek Moczydlowski, Magnus Myreen, Tobias
Nipkow, Michael Norrish, John O’Leary, Cagdas Ozgenc, Heath Putnam,
Tom Ridge, Konrad Slind, Jørgen Villadsen, Norbert Voelker, Ed West-
brook, Freek Wiedijk, Carl Witty, Burkhart Wolff, and no doubt many other
correspondents whose contributions I have thoughtlessly forgotten about
over the course of time, for their invaluable help.

Even in the age of the Web, access to good libraries has been vital. I
want to thank the staff of the Cambridge University Library, the Com-
puter Laboratory and DPMMS libraries, the mathematics and computer
science libraries of Åbo Akademi, and more recently Portland State Uni-
versity Library and Intel Library, who have often helped me track down
obscure references. I also want to acknowledge the peerless Powell’s Book-
store (www.powells.com), which has proved to be a goldmine of classic logic
and computer science texts.

Finally, let me thank Frances Nex for her extraordinarily painstaking
copyediting, as well as Catherine Appleton, Charlotte Broom, Clare
Dennison and David Tranah at Cambridge University Press, who have shep-
herded this book through to publication despite my delays, and have pro-
vided invaluable advice, backed up by the helpful comments of the Press’s
anonymous reviewers.

How to read this book

The text is designed to be read sequentially from beginning to end. However,
after a study of Chapter 1 and a good part of each of Chapters 2 and 3,
the reader may be in a position to dip into other parts according to taste.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Preface xvii

To support this, I’ve tried to make some important cross-references explicit,
and to avoid over-elaborate or non-standard notation where possible.

Each chapter ends with a number of exercises. These are almost never
intended to be routine, and some are very difficult. This reflects my belief
that it’s more enjoyable and instructive to solve one really challenging prob-
lem than to plod through a large number of trivial drill exercises. The
reader shouldn’t be discouraged if most of them seem too hard. They are all
optional, i.e. the text can be understood without doing any of them.

The mathematics used in this book

Mathematics plays a double role in this book: the subject matter itself is
treated mathematically, and automated reasoning is also applied to some
problems in mathematics. But for the most part, the mathematical knowl-
edge needed is not all that advanced: basic algebra, sets and functions, induc-
tion, and perhaps most fundamentally, an understanding of the notion of a
proof. In a few places, more sophisticated analysis and algebra are used,
though I have tried to explain most things as I go along. Appendix 1 is a
summary of relevant mathematical background that the reader might refer
to as needed, or even skim through at the outset.

The software in this book

An important part of this book is the associated software, which includes
simple implementations, in the OCaml programming language, of the var-
ious theorem-proving techniques described. Although the book can gener-
ally be understood without detailed study of the code, explanations are
often organized around it, and code is used as a proxy for what would
otherwise be a lengthy and formalistic description of a syntactic process.
(For example, the completeness proof for first-order logic in Sections 6.4–6.8
and the proof of Σ1-completeness of Robinson arithmetic in Section 7.6 are
essentially detailed informal arguments that some specific OCaml functions
always work.) So without at least a weak impressionistic idea of how the
code works, you will probably find some parts of the book heavy going.

Since I expect that many readers will have little or no experience of pro-
gramming, at least in a functional language like OCaml, I have summarized
some of the key ideas in Appendix 2. I don’t delude myself into believing
that reading this short appendix will turn a novice into an accomplished
functional programmer, but I hope it will at least provide some orientation,
and it does include references that the reader can pursue if necessary. In fact,

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


xviii Preface

the whole book can be considered an extended case study in functional pro-
gramming, illustrating many important ideas such as structured data types,
recursion, higher-order functions, continuations and abstract data types.

I hope that many readers will not only look at the code, but actually run
it, apply it to new problems, and even try modifying or extending it. To do
any of these, though, you will need an OCaml interpreter (see Appendix 2
again). The theorem-proving code itself is almost entirely listed in piecemeal
fashion within the text. Since the reader will presumably profit little from
actually typing it in, all the code can be downloaded from the website for
this book (www.cambridge.org/9780521899574) and then just loaded into
the OCaml interpreter with a few keystrokes or cut-and-pasted one phrase
at a time.

In the future, I hope to make updates to the code and perhaps ports
to other languages available at the same URL. More details can be found
there about how to run the code, and hence follow along the explanations
given in the book while trying out the code in parallel, but I’ll just mention
a couple of important points here. Probably the easiest way to proceed
is to load the entire code associated with this book, e.g. by starting the
OCaml interpreter ocaml in the directory (folder) containing the code and
typing:

#use "init.ml";;

The default environment is set up to automatically parse anything in
French-style �quotations� as a first-order formula. To use some code in
Chapter 1 you will need to change this to parse arithmetic expressions:

let default_parser = make_parser parse_expression;;

and to use some code in Chapter 2 on propositional logic, you will need to
change it to parse propositional formulas:

let default_parser = parse_prop_formula;;

Otherwise, you can more or less dip into any parts of the code that interest
you. In a very few cases, a basic version of a function is defined first as part of
the expository flow but later replaced by a more elaborate or efficient version
with the same name. The default environment in such cases will always give
you the latest one, and if you want to follow the exposition conscientiously
you may want to cut-and-paste the earlier version from its source file.

The code is mainly intended to serve a pedagogical purpose, and I have
always given clarity and/or brevity priority over efficiency. Still, it sometimes

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org


Preface xix

might be genuinely useful for applications. In any case, before using it, please
pay careful attention to the (minimal) legal restrictions listed on the website.
Note also that St̊almarck’s algorithm (Section 2.10) is patented, so the code
in the file stal.ml should not be used for commercial applications.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-89957-4 - Handbook of Practical Logic and Automated Reasoning
John Harrison
Frontmatter
More information

http://www.cambridge.org/9780521899574
http://www.cambridge.org
http://www.cambridge.org

