
1

Distributed Constraint Satisfaction

In this chapter and the next we discuss cooperative situations in which agents
collaborate to achieve a common goal. This goal can be viewed as shared between
the agents or, alternatively, as the goal of a central designer who is designing the
various agents. Of course, if such a designer exists, a natural question is why
it matters that there are multiple agents; they can be viewed merely as end
sensors and effectors for executing the plan devised by the designer. However,
there exist situations in which a problem needs to be solved in a distributed
fashion, either because a central controller is not feasible or because one wants
to make good use of the distributed resources. A good example is provided by
sensor networks. Such networks consist of multiple processing units, each withsensor network

local sensor capabilities, limited processing power, limited power supply, and
limited communication bandwidth. Despite these limitations, these networks aim
to provide some global service. Figure 1.1 shows an example of a fielded sensor
network used for monitoring environmental quantities like humidity, temperature
and pressure in an office environment. Each sensor can monitor only its local area
and, similarly, can communicate only with other sensors in its local vicinity. The
question is what algorithm the individual sensors should run so that the center
can still piece together a reliable global picture.

Distributed algorithms have been widely studied in computer science. We
concentrate on distributed problem-solving algorithms of the sort studied in
artificial intelligence. We divide the discussion into two parts. In this chapter we
cover distributed constraint satisfaction, where agents attempt in a distributed
fashion to find a feasible solution to a problem with global constraints. In the
next chapter we look at agents who try not only to satisfy constraints, but also to
optimize some objective function subject to these constraints.

Later in this book we will encounter additional examples of distributed problem
solving. Each of them requires specific background, however, which is why they
are not discussed here. Two of them stand out in particular.� In Chapter 7 we encounter a family of techniques that involve learning,

some of them targeted at purely cooperative situations. In these situations
the agents learn through repeated interactions how to coordinate a choice
of action. This material requires some discussion of noncooperative game
theory (discussed in Chapter 3) as well as general discussion of multiagent
learning (discussed in Chapter 7).
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2 Distributed Constraint Satisfaction
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Figure 1.1 Part of a real sensor network used for indoor environmental monitoring.

� In Chapter 13 we discuss the use of logics of knowledge (introduced in that
chapter) to establish the knowledge conditions required for coordination,
including an application to distributed control of multiple robots.

1.1 Defining distributed constraint satisfaction problems

A constraint satisfaction problem (CSP) is defined by a set of variables, domainsconstraint
satisfaction

problem (CSP)
for each of the variables, and constraints on the values that the variables might
take on simultaneously. The role of constraint satisfaction algorithms is to assign
values to the variables in a way that is consistent with all the constraints, or to
determine that no such assignment exists.

Constraint satisfaction techniques have been applied in diverse domains, in-
cluding machine vision, natural language processing, theorem proving, and plan-
ning and scheduling, to name but a few. Here is a simple example taken from the
domain of sensor networks. Figure 1.2 depicts a three-sensor snippet from the
scenario illustrated in Figure 1.1. Each of the sensors has a certain radius that,
in combination with the obstacles in the environment, gives rise to a particular
coverage area. These coverage areas are shown as ellipses in Figure 1.2. As you
can see, some of the coverage areas overlap. We consider a specific problem
in this setting. Suppose that each sensor can choose one of three possible radio
frequencies. All the frequencies work equally well so long as no two sensors
with overlapping coverage areas use the same frequency. The question is which
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1.1 Defining distributed constraint satisfaction problems 3

Figure 1.2 A simple sensor net problem.

algorithms the sensors should employ to select their frequencies, assuming that
this decision cannot be made centrally.

The essence of this problem can be captured as a graph-coloring problem. Fig-
ure 1.3 shows such a graph, corresponding to the sensor network CSP above. The
nodes represent the individual units; the different frequencies are represented by
colors; and two nodes are connected by an undirected edge if and only if the cov-
erage areas of the corresponding sensors overlap. The goal of graph coloring is to
choose one color for each node so that no two adjacent nodes have the same color.

Formally speaking, a CSP consists of a finite set of variables X = {X1, . . . ,

Xn}, a domain Di for each variable Xi , and a set of constraints {C1, . . . , Cm}.
Although in general CSPs allow infinite domains, we assume here that all the
domains are finite. In the graph-coloring example above there were three vari-
ables, and they each had the same domain, {red, green, blue}. Each constraint is a
predicate on some subset of the variables, say, Xi1, . . . , Xij ; the predicate defines
a relation that is a subset of the Cartesian product Di1 × · · · ×Dij . Each such
constraint restricts the values that may be simultaneously assigned to the vari-
ables participating in the constraint. In this chapter we restrict the discussion to
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Figure 1.3 A graph-coloring problem equivalent to the sensor net problem of Figure 1.2.
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4 Distributed Constraint Satisfaction

binary constraints, each of which constrains exactly two variables. For example,
in the map-coloring case, each “not-equal” constraint applied to two nodes.

Given a subset S of the variables, an instantiation of S is an assignment of a
unique domain value for each variable in S; it is legal if it does not violate any
constraint that mentions only variables in S. A solution to a network is a legal
instantiation of all variables. Typical tasks associated with constraint networks are
to determine whether a solution exists, to find one or all solutions, to determine
whether a legal instantiation of some of the variables can be extended to a solution,
and so on. We will concentrate on the most common task, which is to find one
solution to a CSP, or to prove that none exists.

In a distributed CSP, each variable is owned by a different agent. The goal is
still to find a global variable assignment that meets the constraints, but each agent
decides on the value of his own variable with relative autonomy. While he does
not have a global view, each agent can communicate with his neighbors in the
constraint graph. A distributed algorithm for solving a CSP has each agent engage
in some protocol that combines local computation with communication with his
neighbors. A good algorithm ensures that such a process terminates with a legal
solution (or with a realization that no legal solution exists) and does so quickly.

We discuss two types of algorithms. Algorithms of the first kind embody a
least-commitment approach and attempt to rule out impossible variable values
without losing any possible solutions. Algorithms of the second kind embody a
more adventurous spirit and select tentative variable values, backtracking when
those choices prove unsuccessful. In both cases we assume that the communica-
tion between neighboring nodes is perfect, but nothing about its timing; messages
can take more or less time without rhyme or reason. We do assume, however, that
if node i sends multiple messages to node j , those messages arrive in the order
in which they were sent.

1.2 Domain-pruning algorithms

Under domain-pruning algorithms, nodes communicate with their neighbors in
order to eliminate values from their domains. We consider two such algorithms.
In the first, the filtering algorithm, each node communicates its domain to itsfiltering

algorithm neighbors, eliminates from its domain the values that are not consistent with the
values received from the neighbors, and the process repeats. Specifically, each
node xi with domain Di repeatedly executes the procedure Revise(xi, xj ) for
each neighbor xj .

procedure Revise(xi, xj )
forall vi ∈ Di do

if there is no value vj ∈ Dj such that vi is consistent with vj then
delete vi from Di

The process, known also under the general term arc consistency, terminatesarc consistency

when no further elimination takes place, or when one of the domains becomes
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1.2 Domain-pruning algorithms 5
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Figure 1.4 A family of graph coloring problems

empty (in which case the problem has no solution). If the process terminates with
one value in each domain, that set of values constitutes a solution. If it terminates
with multiple values in each domain, the result is inconclusive; the problem might
or might not have a solution.

Clearly, the algorithm is guaranteed to terminate, and furthermore it is sound (in
that if it announces a solution, or announces that no solution exists, it is correct),
but it is not complete (i.e., it may fail to pronounce a verdict). Consider, for
example, the family of very simple graph-coloring problems shown in Figure 1.4.
(Note that problem (d) is identical to the problem in Figure 1.3.)

In this family of CSPs the three variables (i.e., nodes) are fixed, as are the
“not-equal” constraints between them. What are not fixed are the domains of the
variables. Consider the four instances of Figure 1.4.

(a) Initially, as the nodes communicate with one another, only x1’s messages
result in any change. Specifically, when either x2 or x3 receive x1’s message
they remove red from their domains, ending up with D2 = {blue} and
D3 = {blue, green}. Then, when x2 communicates his new domain to x3,
x3 further reduces his domain to {green}. At this point no further changes
take place and the algorithm terminates with a correct solution.

(b) The algorithm starts as before, but once x2 and x3 receive x1’s message they
each reduce their domains to {blue}. Now, when they update each other on
their new domains, they each reduce their domains to {}, the empty set. At
this point the algorithm terminates and correctly announces that no solution
exists.

(c) In this case the initial set of messages yields no reduction in any domain.
The algorithm terminates, but all the nodes have multiple values remaining.
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6 Distributed Constraint Satisfaction

And so the algorithm is not able to show that the problem is overconstrained
and has no solution.

(d) Filtering can also fail when a solution exists. For similar reasons as in
instance (c), the algorithm is unable to show that in this case the problem
does have a solution.

In general, filtering is a very weak method and, at best, is used as a preprocess-
ing step for more sophisticated methods. The algorithm is directly based on the
notion of unit resolution from propositional logic. Unit resolution is the followingunit resolution

inference rule:

A1

¬(A1 ∧ A2 ∧ · · · ∧ An)

¬(A2 ∧ · · · ∧ An)

To see how the filtering algorithm corresponds to unit resolution, we must
first write the constraints as forbidden value combinations, called Nogoods. ForNogood

example, the constraint that x1 and x2 cannot both take the value “red” would give
rise to the propositional sentence ¬(x1 = red ∧ x2 = red), which we write as the
Nogood {x1, x2}. In instance (b) of Figure 1.4, agent X2 updated his domain based
on agent X1’s announcement that x1 = red and the Nogood {x1 = red, x2 = red}.

x1 = red
¬(x1 = red ∧ x2 = red)

¬(x2 = red)

Unit resolution is a weak inference rule, and so it is not surprising that the
filtering algorithm is weak as well. Hyper-resolution is a generalization of unithyper-resolution

resolution and has the following form:

A1 ∨ A2 ∨ · · · ∨ Am

¬(A1 ∧ A1,1 ∧ A1,2 ∧ · · · )
¬(A2 ∧ A2,1 ∧ A2,2 ∧ · · · )

...
¬(Am ∧ Am,1 ∧ Am,2 ∧ · · · )

¬(A1,1 ∧ · · · ∧ A2,1 ∧ · · · ∧ Am,1 ∧ · · · )
Hyper-resolution is both sound and complete for propositional logic, and

indeed it gives rise to a complete distributed CSP algorithm. In this algorithm,
each agent repeatedly generates new constraints for his neighbors, notifies them
of these new constraints, and prunes his own domain based on new constraints
passed to him by his neighbors. Specifically, he executes the following algorithm,
where NGi is the set of all Nogoods of which agent i is aware and NG∗

j is a set
of new Nogoods communicated from agent j to agent i.
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1.2 Domain-pruning algorithms 7

procedure ReviseHR(NGi, NG∗
j )

repeat
NGi ← NGi

⋃
NG∗

j

let NG∗
i denote the set of new Nogoods that i can derive from NGi and

his domain using hyper-resolution
if NG∗

i is nonempty then
NGi ← NGi

⋃
NG∗

i

send the Nogoods NG∗
i to all neighbors of i

if {} ∈ NG∗
i then

stop

until there is no change in i’s set of Nogoods NGi

The algorithm is guaranteed to converge in the sense that after sending and
receiving a finite number of messages, each agent will stop sending messages
and generating Nogoods. Furthermore, the algorithm is complete. The problem
has a solution iff, on completion, no agent has generated the empty Nogood.
(Obviously, every superset of a Nogood is also forbidden, and thus if a single
node ever generates an empty Nogood then the problem has no solution.)

Consider again instance (c) of the CSP problem in Figure 1.4. In contrast to the
filtering algorithm, the hyper-resolution-based algorithm proceeds as follows. Ini-
tially, x1 maintains four Nogoods—{x1 = red, x2 = red}, {x1 = red, x3 = red},
{x1 = blue, x2 = blue}, {x1 = blue, x3 = blue}—which are derived directly
from the constraints involving x1. Furthermore, x1 must adopt one of the values
in his domain, so x1 = red ∨ x1 = blue. Using hyper-resolution, x1 can reason:

x1 = red ∨ x1 = blue
¬(x1 = red ∧ x2 = red)
¬(x1 = blue ∧ x3 = blue)

¬(x2 = red ∧ x3 = blue)

Thus, x1 constructs the new Nogood {x2 = red, x3 = blue}; in a similar way he
can also construct the Nogood {x2 = blue, x3 = red}. x1 then sends both Nogoods
to his neighbors x2 and x3. Using his domain, an existing Nogood and one of
these new Nogoods, x2 can reason:

x2 = red ∨ x2 = blue
¬(x2 = red ∧ x3 = blue)
¬(x2 = blue ∧ x3 = blue)

¬(x3 = blue)

Using the other new Nogood from x1, x2 can also construct the Nogood
{x3 = red}. These two singleton Nogoods are communicated to x3 and allow him
to generate the empty Nogood. This proves that the problem does not have a
solution.
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8 Distributed Constraint Satisfaction

This example, while demonstrating the greater power of the hyper-resolution-
based algorithm relative to the filtering algorithm, also exposes its weakness;
the number of Nogoods generated can grow to be unmanageably large. (Indeed,
we only described the minimal number of Nogoods needed to derive the empty
Nogood; many others would be created as all the agents processed each other’s
messages in parallel. Can you find an example?) Thus, the situation in which we
find ourselves is that we have one algorithm that is too weak and another that is
impractical. The problem lies in the least-commitment nature of these algorithms;
they are restricted to removing only provably impossible value combinations.
The alternative to such “safe” procedures is to explore a subset of the space,
making tentative value selections for variables, and backtracking when necessary.
This is the topic of the next section. However, the algorithms we have just
described are not irrelevant; the filtering algorithm is an effective preprocessing
step, and the algorithm we discuss next is based on the hyper-resolution-based
algorithm.

1.3 Heuristic search algorithms

A straightforward centralized trial-and-error solution to a CSP is to first order
the variables (e.g., alphabetically). Then, given the ordering x1, x2, . . . , xn, in-
voke the procedure ChooseValue(x1, {}). The procedure ChooseValue is defined
recursively as follows, where {v1, v2, . . . , vi−1} is the set of values assigned to
variables x1, . . . , xi−1.

procedure ChooseValue(xi , {v1, v2, . . . , vi−1})
vi ← value from the domain of xi that is consistent with {v1, v2, . . . , vi−1}
if no such value exists then

backtrack1

else if i = n then
stop

else
ChooseValue(xi+1, {v1, v2, . . . , vi})

This exhaustive search of the space of assignments has the advantage of com-chronological
backtracking pleteness. But it is “distributed” only in the uninteresting sense that the dif-

ferent agents execute sequentially, mimicking the execution of a centralized
algorithm.

The following attempt at a distributed algorithm has the opposite properties;
it allows the agents to execute in parallel and asynchronously, is sound, but is
not complete. Consider the following naive procedure, executed by all agents in
parallel and asynchronously.

1. There are various ways to implement the backtracking in this procedure. The most straightforward way
is to undo the choices made thus far in reverse chronological order, a procedure known as chronological
backtracking. It is well known that more sophisticated backtracking procedures can be more efficient, but
that does not concern us here.
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1.3 Heuristic search algorithms 9

select a value from your domain
repeat

if your current value is consistent with the current values of your
neighbors, or if none of the values in your domain are consistent with
them then

do nothing
else

select a value in your domain that is consistent with those of your
neighbors and notify your neighbors of your new value

until there is no change in your value

Clearly, when the algorithm terminates because no constraint violations have
occurred, a solution has been found. But in all other cases, all bets are off. If
the algorithm terminates because no agent can find a value consistent with those
of his neighbors, there might still be a consistent global assignment. And the
algorithm may never terminate even if there is a solution. For example, consider
example (d) of Figure 1.4: if every agent cycles sequentially between red, green,
and blue, the algorithm will never terminate.

We have given these two straw-man algorithms for two reasons. Our first reason
is to show that reconciling true parallelism and asynchrony with soundness and
completeness is likely to require somewhat complex algorithms. And second,
the fundamental heuristic algorithm for distributed CSPs—the asynchronous
backtracking (or ABT) algorithm—shares much with the two algorithms. FromABT algorithm

the first algorithm it borrows the notion of a global total ordering on the agents.
From the second it borrows a message-passing protocol, albeit a more complex
one, which relies on the global ordering. We will describe the ABT in its simplest
form. After demonstrating it on an extended example, we will point to ways in
which it can be improved upon.

1.3.1 The asynchronous backtracking algorithm

As we said, the asynchronous backtracking (ABT) algorithm assumes a total
ordering (the “priority order”) on the agents. Each binary constraint is known to
both the constrained agents and is checked in the algorithm by the agent with
the lower priority between the two. A link in the constraint network is always
directed from an agent with higher priority to an agent with lower priority.

Agents instantiate their variables concurrently and send their assigned values
to the agents that are connected to them by outgoing links. All agents wait for
and respond to messages. After each update of his assignment, an agent sends his
new assignment along all outgoing links. An agent who receives an assignment
(from the higher-priority agent of the link), tries to find an assignment for his
variable that does not violate a constraint with the assignment he received.

ok? messages are messages carrying an agent’s variable assignment. When an
agent Ai receives an ok? message from agent Aj , Ai places the received assign-
ment in a data structure called agent view, which holds the last assignment Ai
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10 Distributed Constraint Satisfaction

received from higher-priority neighbors such as Aj . Next, Ai checks if his current
assignment is still consistent with his agent view. If it is consistent, Ai does noth-
ing. If not, then Ai searches his domain for a new consistent value. If he finds one,
he assigns his variable that value and sends ok? messages to all lower-priority
agents linked to him informing them of this value. Otherwise, Ai backtracks.

The backtrack operation is executed by sending a Nogood message. Recall that
a Nogood is simply an inconsistent partial assignment, that is, assignments of spe-
cific values to some of the variables that together violate the constraints on those
variables. In this case, the Nogood consists of Ai’s agent view.2 The Nogood is
sent to the agent with the lowest priority among the agents whose assignments are
included in the inconsistent tuple in the Nogood. Agent Ai who sends a Nogood
message to agent Aj assumes that Aj will change his assignment. Therefore, Ai

removes from his agent view the assignment of Aj and makes an attempt to find
an assignment for Aj ’s variable that is consistent with the updated agent view.

Because of its reliance on building up a set of Nogoods, the ABT algorithm
can be seen as a greedy version of the hyper-resolution algorithm of the previous
section. In the latter, all possible Nogoods are generated by each agent and
communicated to all neighbors, even though the vast majority of these messages
are not useful. Here, agents make tentative choices of a value for their variables,
only generate Nogoods that incorporate values already generated by the agents
above them in the order, and—importantly—communicate new values only to
some agents and new Nogoods to only one agent.

Below is the pseudocode of the ABT algorithm, specifying the protocol for
agent Ai .

when received (Ok?, (Aj , dj )) do
add (Aj , dj ) to agent view
check agent view

when received (Nogood, nogood) do
add nogood to Nogood list
forall (Ak , dk) ∈ nogood, if Ak is not a neighbor of Ai do

add (Ak , dk) to agent view
request Ak to add Ai as a neighbor

check agent view

procedure check agent view
when agent view and current value are inconsistent do

if no value in Di is consistent with agent view then
backtrack

else
select d ∈ Di consistent with agent view
current value ← d

send (ok?, (Ai , d)) to lower-priority neighbors

2. We later discuss schemes that achieve better performance by avoiding always sending this entire set.
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