Hormones, Cognition and Dementia

State of the Art and Emergent Therapeutic Strategies
Hormones, Cognition and Dementia

State of the Art and Emergent Therapeutic Strategies

Edited by

Eef Hogervorst PhD
Professor of Biological Psychology, Department of Human Sciences, Loughborough University, Loughborough, UK; Visiting Senior Research Fellow, Department of Public Health and Primary Care, University of Cambridge, UK; Visiting Professor, Department of Epidemiology and Public Health, University of Respati, Jakarta, Indonesia

Victor W. Henderson MD MS
Professor of Health Research and Policy (Epidemiology) and of Neurology and Neurological Sciences, Stanford University, CA, USA

Robert B. Gibbs PhD
Professor of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Roberta Diaz Brinton PhD
Professor of Molecular Pharmacology and Toxicology, Neuroscience and Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
Contents

List of contributors vii
Preface xi

Section 1 – Estrogens and cognition: perspectives and opportunities in the wake of the Women’s Health Initiative Memory Study

1 Women’s Health Initiative Memory Study (WHIMS) program: emerging findings 1
Mark A. Espeland, Sally A. Shumaker, Patricia E. Hogan, and Susan M. Resnick

2 Identifying risk factors for cognitive change in the Women’s Health Initiative: a neural networks approach 11
Stephan Bandelow, Mark A. Espeland, Victor W. Henderson, Susan M. Resnick, Robert B. Wallace, Laura H. Coker, and Eef Hogervorst

3 Estrogen therapy – relationship to longevity and prevalent dementia in the oldest-old: the Leisure World Cohort Study and the 90+ Study 25
Claudia H. Kawas, María M. Corrada, and Annlia Paganini-Hill

4 The critical window hypothesis: hormone exposures and cognitive outcomes after menopause 32
Victor W. Henderson

5 Animal studies that support estrogen effects on cognitive performance and the cholinergic basis of the critical period hypothesis 45
Robert B. Gibbs

6 The healthy cell bias of estrogen action through regulating glucose metabolism and mitochondrial function: implications for prevention of Alzheimer’s disease 55
Roberta Diaz Brinton

Section 2 – Varieties of estrogenic therapy

7 Alternative estrogenic treatment regimens and the Kronos Early Estrogen Prevention Study – Cognitive and Affective substudy (KEEPS-CA) 65
Carey E. Gleason, Whitney Wharton, Cynthia M. Carlsson, and Sanjay Asthana

8 The use of transdermal 17ß-estradiol in the treatment of Alzheimer’s disease 80
Whitney Wharton, Sanjay Asthana, and Carey E. Gleason

9 Alternative modes of treatment: pulsatile estradiol treatment 87
Jin Li and Farook Al-Azzawi

10 In search of estrogen alternatives for the brain 93
Liqin Zhao and Roberta Diaz Brinton

Section 3 – Potential modulators and modifiers of estrogenic effects

11 Progesterone regulation of neuroprotective estrogen actions 101
Christian J. Pike and Jenna C. Carroll

12 Clinical data of estrogen’s effects in the central nervous system: estrogen and mood 110
Bevin N. Powers, Katherine E. Williams, Tonita E. Wroolie, Anna Khaylis, and Natalie L. Rasgon

13 Different forms of soy processing may determine the positive or negative impact on cognitive function of Indonesian elderly 121
Eef Hogervorst, Linda Kushandy, Wita Angriani, Yudarini, Sabarinah, Theresia Ninuk,
Vita Priantina Dewi, Amina Yesufu, Tony Sadjimim, Philip Kreager, and Tri Budi W. Rahardjo

Hypothalamus-pituitary-adrenal axis activity in aging women: its impact on the brain and the potential influence of estradiol

Oliver T. Wolf

Section 4 – Possible genetic factors related to hormone treatment effects

Possible genetic polymorphisms related to sex steroid metabolism and dementia in women

Eef Hogervorst, Stephan Bandelow, and Chris Talbot

Genetics related to sex steroids: implications for Alzheimer’s disease

Chris Talbot

Apolipoprotein E, hormone therapy, and neuroprotection

Robert G. Struble and Mary E. McAsey

Testosterone, gonadotropins, and genetic polymorphisms in men with Alzheimer’s disease

Eef Hogervorst, Stephan Bandelow, and Donald Lehmann

Section 5 – Testosterone, estradiol and men, and sex hormone binding globulin

Androgens and cognitive functioning in women

Barbara B. Sherwin

The role of estradiol in testosterone treatment

Monique M. Cherrier

Endogenous testosterone levels and cognitive aging in men

Scott D. Moffat

Clinical trials and neuroimaging studies of testosterone in men: insights into effects on verbal memory

Pauline M. Maki

Testosterone therapy and Alzheimer’s disease: potential for treatment and prevention in women

Whitney Wharton, Sanjay Asthana, and Carey E. Gleason

Endogenous estradiol and dementia in elderly men: the roles of vascular risk, sex hormone binding globulin, and aromatase activity

Majon Muller and Mirjam I. Geerlings

Testosterone regulates Alzheimer’s disease pathogenesis

Christian J. Pike and Emily R. Rosario

Section 6 – Gonadotropin effects

Involvement of gonadotropins in cognitive function: implications for Alzheimer’s disease

Gemma Casadesus, Kathryn J. Bryan, George Perry, and Mark A. Smith

The role of gonadotropins and testosterone in the regulation of beta-amyloid metabolism

Giuseppe Verdile and Ralph N. Martins

Epilogue

Wulf H. Utian

Concluding remarks

Eef Hogervorst, Victor W. Henderson, Robert B. Gibbs, and Roberta Diaz Brinton

Index

Color plate section is between pages 116 and 117.
Contributors

Farook Al-Azzawi MA PhD FRCOG
Gynaecology Research Unit,
University Hospitals of Leicester,
Leicester, UK

Wita Angrianni PhD
Faculty of Dentistry,
University of Trisakti,
Jakarta, Indonesia

Sanjay Asthana MD FRCPC
Section of Geriatrics and Gerontology,
Department of Medicine,
University of Wisconsin School of Medicine and
Public Health,
Madison, WI;
Geriatric Research, Education and Clinical Center
(GRECC),
William S. Middleton Memorial Veterans Hospital,
Madison, WI, USA

Stephan Bandelow PhD
Department of Human Sciences,
Loughborough University,
Loughborough, UK

Kathryn J. Bryan PhD
Department of Pathology,
Case Western Reserve University,
Cleveland, OH, USA

Cynthia M. Carlsson MD MS
Section of Geriatrics and Gerontology,
Department of Medicine,
University of Wisconsin School of Medicine and
Public Health,
Madison, WI;
Geriatric Research, Education and Clinical Center
(GRECC),
William S. Middleton Memorial Veterans Hospital,
Madison, WI, USA

Jenna C. Carroll BA
Davis School of Gerontology and Neuroscience
Graduate Program,
University of Southern California,
Los Angeles, CA, USA

Gemma Casadesus PhD
Department of Neurosciences,
Case Western Reserve University,
Cleveland, OH, USA

Monique M. Cherrier PhD
Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine;
Veterans Administration Puget Sound Health Care
System GRECC,
Seattle, WA, USA

Laura H. Coker PhD
Department of Public Health Sciences,
Wake Forest University School of Medicine,
Winston-Salem, NC, USA

Maria M. Corrada ScD
Institute for Brain Aging and Dementia,
Department of Neurology,
University of California, Irvine,
Irvine, CA, USA

Vita Priantina Dewi MHS
Center for Health Research,
University of Indonesia,
Jakarta, Indonesia

Roberta Diaz Brinton PhD
Department of Pharmacology and Pharmaceutical
Sciences,
University of Southern California School of
Pharmacy and Pharmaceutical Sciences Center,
Los Angeles, CA;
Program in Neuroscience,
List of contributors

University of Southern California, Los Angeles, CA, USA

Mark A. Espeland PhD
Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Mirjam I. Geerlings PhD
Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands

Robert B. Gibbs PhD
University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA

Carey E. Gleason PhD
Section of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI; Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI, USA

Victor W. Henderson MD MS
Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA

Patricia E. Hogan MS
Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Eef Hogervorst PhD
Department of Human Sciences, Loughborough University, Loughborough, UK

Claudia H. Kawas MD
Institute for Brain Aging and Dementia, Departments of Neurology and Neurobiology and Behavior, University of California, Irvine, CA, USA

Anna Khaylis MS
Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA

Philip Kreager D Phil
Oxford Institute of Ageing, Oxford, UK

Linda Kushandy PhD
Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia

Donald Lehmman
University Department of Pharmacology, Oxford, UK

Jin Li PhD
Gynaecology Research Unit, University Hospitals of Leicester, Leicester, UK

Mary E. McAsey PhD
Department of Obstetrics and Gynecology, SIU School of Medicine, Springfield, IL, USA

Pauline M. Maki MD
Center for Cognitive Medicine, Neuropsychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA

Ralph N. Martins PhD
School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia

Scott D. Moffat PhD
Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA

Majon Muller MD PhD
Department of Geriatric Medicine, University of Utrecht Medical Center, Utrecht, The Netherlands

Theresia Ninuk PhD
University of Respati, Yogyakarta, Indonesia

Annila Paganini-Hill PhD
Department of Preventative Medicine, Keck School of Medicine, University of Southern California; Department of Neurology, University of California, Irvine, CA, USA
George Perry PhD
Department of Pathology,
Case Western Reserve University,
Cleveland, OH;
College of Sciences, University of Texas at San Antonio,
San Antonio, TX, USA

Christian J. Pike PhD
Davis School of Gerontology and Neuroscience
Graduate Program,
University of Southern California,
Los Angeles, CA, USA

Bevin N. Powers BA
Department of Psychiatry and Behavioral Sciences,
Stanford University School of Medicine,
Stanford, CA, USA

Tri Budi W. Rahardjo PhD
Center for Health Research, University of Indonesia,
Jakarta, Indonesia

Natalie L. Rasgon MD PhD
Department of Psychiatry and Behavioral Sciences,
Stanford University School of Medicine,
Stanford, CA, USA

Susan M. Resnick PhD
Laboratory of Personality and Cognition,
Intramural Research Program,
National Institute on Aging, NIH, Baltimore, MD, USA

Emily R. Rosario
Davis School of Gerontology,
University of Southern California,
Los Angeles, CA, USA

Sabarinah MD MSc
Center for Health Research,
University of Indonesia,
Jakarta, Indonesia

Tony Sadjimim MD PhD
University of Respati, Yogyakarta, Indonesia

Barbara B. Sherwin PhD
Department of Psychology, McGill University,
Montreal, Canada

Sally A. Shumaker PhD
Division of Public Health Sciences,
Wake Forest University School of Medicine,
Winston-Salem, NC, USA

Mark A. Smith PhD
Department of Pathology,
Case Western Reserve University,
Cleveland, OH, USA

Robert G. Struble PhD
Center for Alzheimer Disease and Related Disorders,
SIU School of Medicine,
Springfield, IL, USA

Chris Talbot PhD
Department of Genetics, Leicester University,
Leicester, UK

Wulf H. Utian MBBC h PhD DSc(Med)
North American Menopause Society,
Mayfield Heights, OH, USA

Giuseppe Verdile
Centre of Excellence for Alzheimer’s Disease Research
and Care,
Sir James McCusker Alzheimer’s Disease Research
Unit,
School of Exercise, Biomedical and Health Sciences,
Edith Cowan University,
Joondalup, WA, Australia

Robert B. Wallace MS MD
Department of Epidemiology,
The University of Iowa,
Iowa City, IA, USA

Whitney Wharton PhD
Section of Geriatrics and Gerontology,
Department of Medicine,
University of Wisconsin School of Medicine and
Public Health,
Madison, WI, USA

Katherine E. Williams MD
Department of Psychiatry and Behavioral Sciences,
Stanford University School of Medicine,
Stanford, CA, USA

Oliver T. Wolf PhD
Department of Cognitive Psychology,
Ruhr-University Bochum,
Bochum, Germany

Tonita E. Wroolie PhD
Department of Psychiatry and Behavioral Sciences,
Stanford University School of Medicine,
Stanford, CA, USA
<table>
<thead>
<tr>
<th>List of contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amina Yesufu BSc</td>
</tr>
<tr>
<td>Department of Human Sciences,</td>
</tr>
<tr>
<td>Loughborough University,</td>
</tr>
<tr>
<td>Loughborough, UK</td>
</tr>
<tr>
<td>Yudarini MPH</td>
</tr>
<tr>
<td>Center for Health Research,</td>
</tr>
<tr>
<td>University of Indonesia, Jakarta, Indonesia</td>
</tr>
<tr>
<td>Li Qin Zhao PhD</td>
</tr>
<tr>
<td>Department of Pharmacology and Pharmaceutical Sciences,</td>
</tr>
<tr>
<td>University of Southern California School of Pharmacy and Pharmaceutical Sciences Center,</td>
</tr>
<tr>
<td>Los Angeles, CA, USA</td>
</tr>
</tbody>
</table>
In the 1980s and 1990s, laboratory and clinical research suggested that estrogens were promising candidates in women for the treatment of dementia due to Alzheimer’s disease and for age-related cognitive decline. However, soon after the turn of the century, there was a remarkable change in attitude, which was almost comparable to a paradigm shift. As stated by Professor David Purdie (Edinburgh) in a 2003 BBC interview, “The only thing hormone replacement therapy has not yet been accused of is global warming and aggravating the national debt.” To a major extent, this change was the result of the Women’s Health Initiative, a large placebo-controlled clinical trial of conjugated equine estrogens with or without a progestogen, in which a number of health outcomes were examined. Beginning in 2002, Women’s Health Initiative publications reported important adverse health effects of hormone treatment, including the heretofore unappreciated risk of coronary heart disease. An ancillary study of women aged 65 years and older, the Women’s Health Initiative Memory Study (WHIMS), was an important milestone in scientific research on steroid hormones and cognition, and it is the logical starting point for work presented in this volume.

The WHIMS is the only clinical trial to have examined effects of estrogens on dementia risk, and it is one of the largest trials to have considered estrogenic effects on cognitive outcomes in older women without dementia. The primary finding of increased risk of dementia in women who were randomized to receive hormone therapy came at a time when several clinical trials failed to show clinical benefit of estrogens in women with Alzheimer’s disease. Further, results from the WHIMS, as well as from other clinical trials in older postmenopausal women, were unable to document cognitive benefit of estrogens in women without dementia.

These largely unexpected findings constitute a clarion call to reassess where the field is today and to re-examine some of the basic and clinical underpinnings of our current knowledge in areas related to sex steroid hormones, cognitive aging, and dementia. This book brings together contributions from many of the most prominent researchers in areas of women’s health, cognition, and steroid clinical endocrinology. These investigators have applied techniques from cell culture, animal models, human populations, clinical trials, and brain imaging in an attempt to understand effects of estrogens, androgens, progestogens, and the gonadotropins on human cognition and aging. Contributors to this volume summarize our current state of knowledge on selected topics and highlight areas where new research is needed. Through this means, we hope to promote collaborative, interdisciplinary research with translational goals: what can we learn from basic and clinical studies that we can apply to future therapies in older men and women?

This book is loosely divided into six sections. The first summarizes the most recent data from the WHIMS, including new brain imaging data, and it describes novel analytical techniques that attempt to find subgroups for whom cognitive outcomes might be improved by hormone therapy. Novel data from a study of nonagenarians and centurians substantiate increased risks for dementia among very old women using hormone treatment for long periods of time. One important question raised by the WHIMS is that of a critical window close to the time of natural menopause. During this so-called window, might estrogens reduce the risk of harmful outcomes, such as Alzheimer’s disease, even if later therapy does not? If so, what factors might account for such a window of opportunity? The role of the basal forebrain cholinergic system could be of paramount importance. Another potential mechanism is described by the “healthy cell bias” theory.

In the laboratory, different estrogens can have different effects, depending on the model system under consideration. Are some estrogens, some hormonal...
formulations, or some routes of estrogenic administration more conducive to cognitive benefit? The second section of the book describes some of these options. Effects of transdermal estradiol on cognition in women with and without dementia are reviewed, and nasal administration of estradiol is discussed as an alternative to the oral administration. In this section also, effects of selective estrogen receptor modulators (SERM) on cognitive function are discussed. Phytoestrogens, whose impact can also be tissue selective, are considered as well.

It is difficult to consider estrogen actions in the brain without at the same time considering progestogen actions. The third section discusses potential modulators of estrogenic effects by progesterone, as well as other modifiers of estrogen actions, such as cortisol and folate. Some researchers suggest that estrogens can affect cognitive function indirectly, working to improve mood, sleep, or vasomotor symptoms. Estrogen effects on mood disorders are reviewed in this section. In Section 4, the focus is on genetic variation related to steroid hormone metabolism, Alzheimer’s disease, and apolipoprotein E. This exciting research area may lead to new screening tools for assessment of risks and benefits of hormone treatment.

The relevance of testosterone to brain action in women and for men is being increasingly recognized. This steroid not only affects the nervous system directly, but it may also modulate brain effects of estradiol. Androgen research has received less attention than estrogen research, and substantial portions of Sections 5 and 6 are devoted to new insights on testosterone, cognition, and Alzheimer’s disease. The role of gonadotropins is discussed here in relation to dementia, as is the role of sex hormone binding globulin, whose levels determine those of free sex hormones. Lowering levels of this globulin would increase free levels of both estradiol and testosterone, which could be of value in some clinical settings. Reducing gonadotropins will increase sex steroid levels, but in some models these peptides are also neurotoxic. Data from trials in women with Alzheimer’s disease are presented, together with supportive results from animal and cell-culture experiments. The volume concludes with a perspective from Professor Wulf H. Utian, an expert in women’s health and Executive Director of the North American Menopause Society.