
1
Introduction

Aims
The aim of this chapter is to provide a motivation for studying the mod-

elling of computing systems by discussing the challenges of developing correct
software. On completion of this chapter, the reader should be aware of the main
concepts to be presented in the book and know where to find the relevant mate-
rial in the text.

1.1 Software
Software is pervasive, error-prone, expensive to develop and, as an en-

gineering medium, extraordinarily seductive. Its seemingly infinite flexibility,
increasing power and the absence of physical characteristics, such as weight,
make it an ideal medium in which to express complex models which might not
exist at all were it not for software. As a result, software is often developed for
applications which are critical either to an enterprise’s mission or to the quality
of life of those with whom the system interacts.

Challenged by the variety and scale of software applications, the participants
in the 1968 NATO Conference on Software Engineering foresaw a discipline of
software development with a sound scientific basis [Naur&69]. Over the last 40
years, there is little doubt that enormous advances have been made in our ability
to control software development. However, software projects continue to suffer
from serious difficulties which can lead to the delivery of faulty goods that are
over budget and behind schedule.

The rapid increase in processor power has naturally led to increasing demands
being made on software and its developers. Software is almost always devel-
oped as part of a larger system involving computing hardware, special systems
such as sensors and actuators, human-computer interfaces and human beings.
However, the long lead-times associated with the production of special items of
hardware mean that additional functionality caused by changes in customers’
requirements is often realised in software because that medium is seen as more
flexible.
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2 1 Introduction

A comparison between software engineering and the engineering in other me-
dia, whether mechanical, fluid, chemical or electronic, is difficult because of the
different characteristics of those media. However, there is little doubt that soft-
ware engineers can still learn from other more mature engineering disciplines.

1.2 Modelling and analysis
One of the major differences between software engineering and other

forms of engineering is that the other disciplines have a longer tradition of con-
structing abstract models of the product in the early stages of development. Such
models serve as a proving ground for design ideas and as a communication
medium between engineers and customers. As a result of modelling, engineers
can avoid errors which might otherwise only become obvious in the very late
stages of development, when expensive commitments have been made to mate-
rials and designs. There are two aspects of these models which are crucial to
their successful use: abstraction and rigour.

Engineering models are abstract in the sense that aspects of the product not
relevant to the analysis in hand are not included. For example, an aeronautical
engineer investigating the aerodynamics of an aircraft design may model the air
flow over the surfaces (mathematically or in a wind tunnel) because air flow is a
dominant design parameter. The model is unlikely to include the user interface
of the cockpit instruments. Similarly, human factors engineers who design cock-
pit instruments model the cockpit, not the aerodynamics of the wing surfaces.
The choice of which aspects of a system should be included in the model (its
level of abstraction) is a matter of engineering skill.

Perhaps the most significant property of a system model is its suitability for
analysis. The purpose of such an analysis is to provide an objective assess-
ment of a model’s properties. For example, a model of a new design of bridge
might be used to assess the design’s ability to withstand physical stresses with
acceptable risk of collapse. This contrasts with the more subjective analysis of
a review or inspection in which the outcome may depend on the consultants
carrying out the job. It is also important to be able to repeat the assessment on
alternative models and to be able to perform as much as possible of the analysis
mechanically, in order to minimise the risk of subjectivity and error as well as
the required human effort. To obtain this level of objectivity, mechanisation and
repeatability, mathematics is often used in the analysis. Indeed, many system
models exist only as mathematical constructions and not as physical entities at
all.

How do these concepts of system modelling transfer to the development of
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1.3 This book 3

computing systems, and in particular to software? A wide range of modelling
techniques has been developed for computing systems, including pseudo-code,
natural language, graphical and mathematical notations. Ultimately, a computer
program could be seen as a model of the system which is to be provided: an ex-
ecutable model which meets all the relevant user requirements, or at least a large
enough subset of them to make the product acceptable. Although a wide variety
of modelling techniques is available, comparatively few provide the combina-
tion of abstraction and rigour which could bring the benefits of early detection
of errors and increased confidence in designs.

This book describes well-established modelling techniques which combine
abstraction with rigour. We will introduce the elements of a modelling language
that can be combined effectively with existing software engineering techniques,
opening up the possibility of improved analysis in early development stages.

Models expressed very abstractly in the early stages of system development
would normally be treated as specifications of a system. If the models instead
are described at a lower level of abstraction later in the process, they will nor-
mally be called designs. The borderlines between specification, design and im-
plementation are not clearly defined and the modelling and analysis techniques
discussed in this book are not confined to any particular stage of software de-
velopment. We will therefore tend to avoid loaded terms such as “specification”
and use the general term “model” to refer to the system descriptions we develop.
Nevertheless, we focus on requirements analysis and early design stages because
these are the phases in which the application of modelling is most beneficial.

1.3 This book
This book is concerned with the construction of abstract models for

computing systems. The notation used to describe such models is a subset of
the ISO standardised language VDM-SL [ISOVDM96]. The VDM-SL nota-
tion supports abstraction in a variety of ways which will be introduced in the
text. The rigour of the language lies mainly in its definition in the ISO standard,
which is extremely thorough and detailed. Indeed, the language is referred to
as a formal modelling language because its syntax and the meaning of models
expressed in the language are so thoroughly defined. This formality allows anal-
yses to be carried out consistently because the formal definition of the meaning
of the language constructs leaves little or no room for interpretations to differ
between support tools or practitioners.

This book is about the practical exploitation of modelling techniques. Our
pragmatic approach is realised in three ways. First, we make extensive use of a
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4 1 Introduction

tool, VDMTools, which has a strong record of industrial application and which is
available for free download. Most exercises in the book are designed to provide
training in both modelling concepts and tool support. Second, we use concrete
examples to motivate the introduction of language features. The majority of
these examples are derived from real models developed by industrial engineers
or in close collaboration with industry. Third, the validation approach we use in
this book exploits testing rather than proof, which we see as a more advanced
technique to be used when occasion demands, but which does not form a part of
the initial training offered here.

1.4 VDM-SL
The Vienna Development Method (VDM) is a collection of techniques

for modelling, analysing and developing sequential software systems. VDM’s
modelling language, which we use as the main vehicle in this book, is commonly
known as VDM-SL (the VDM Specification Language). It is one of the most
widely used modelling languages, having been applied to the construction of
a variety of software systems. Its name refers to its origin in IBM’s Vienna
Development Laboratory [Jones99].

The VDM-SL notation is fixed in an ISO standard [ISOVDM96]. It permits
both abstraction from the data structures to be used in the final implementa-
tion of the system and also algorithm abstraction, whereby one can state what a
function should do without having to provide detail on how it should work.

The analysis techniques for models in VDM-SL covered in this text include
static checking of syntax and type-correctness of models, and animation of mod-
els by execution. Mathematical proof can be used to show internal consistency
of models and to show that less abstract models are faithful to more abstract
models of the same system. However, this book does not seek to cover the proof
techniques, instead focussing on the construction of models and analysis by the
other means mentioned above.

1.5 The structure of a VDM-SL model
This section provides a very brief introduction to the structure of a

VDM-SL model through the example of a simple air traffic control system which
monitors the movements of aircraft in the airspace around an airport. In what
follows, we are not concerned with notational detail, but only with the general
form and content of the model. As each main feature of the model emerges,
a reference is given to the relevant part of the book. The process of deriving
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1.5 The structure of a VDM-SL model 5

a VDM-SL model from a collection of customer requirements is discussed in
Chapter 2.

A VDM-SL model, like many programs, is structured around descriptions
of data and functionality. Data are described through a collection of type and
value (constant) definitions; functionality is described through function defini-
tions. Each kind of definition is considered in turn below.

1.5.1 Modelling data in VDM-SL
Data are mainly modelled by means of type definitions. A type is a col-

lection of values which might arise in the model of a system. In our air traffic
control model, for example, we could have types to represent the positions of
aircraft, their latitude, longitude and altitude. A type definition gives a represen-
tation to a type. For example, the author of the air traffic control model could
choose a representation for latitudes. In VDM-SL, the modeller would write the
following1:

Latitude = ???

How could a latitude be represented? A latitude is usually a number between
−90 and +90, assuming a representation in degrees. The modelling language
VDM-SL provides the modeller with a collection of basic types from which
to build representations of new types such as Latitude. The basic types in-
clude collections of values such as the natural numbers, integers, real numbers,
Boolean values and characters. The basic types from which models can be con-
structed are introduced in Chapter 5. In this example, the representation of a
latitude could be as a real number. This would be written as follows:

Latitude = real

However, it is still necessary to record the restriction that the latitude must be
between −90 and +90. Such additional restrictions on the values included in a
type are recorded by means of invariants. An invariant is a property which must
always be true of values in a certain type. If a type has an invariant associated
with it, the invariant is stated as a Boolean expression on a typical element of
the type. Thus, the following type definition defines a type called Latitude
which contains all real numbers from −90 up to, but not including, +90. It does
this by describing the property that a typical latitude lat is greater than or equal
to −90 and less than or equal to +90. Thus:

1 In this book, VDM-SL models will be presented in a typewriter typeface.
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6 1 Introduction

Latitude = real
inv lat == lat >= -90 and lat < 90

The Boolean expression defining the invariant on the type Latitude is writ-
ten and interpreted using the logic of VDM-SL. This logic, which incorporates
operators like and, or and not, is introduced in Chapter 4.

In VDM-SL there is no limit to the precision or size of the numbers in the
basic type real. This is an example of abstraction from computer systems
where a limit will exist. When the precision or maximum size of a number is a
significant factor in the model, this is expressed by defining a new type (e.g. one
called LongReal) which respects the relevant restrictions.

Types such as Latitude can be used in the representations of other, more
complex, types. For example, aircraft positions can be modelled by a type
AircraftPosition defined as follows:

AircraftPosition :: lat : Latitude
long : Longitude
alt : Altitude

Here AircraftPosition is represented as a record type. A record type is
similar to a record or struct type in other programming languages such as Ada
or C++. Its elements are values which are each made up of several components.
This definition says that an aircraft position will consist of three things: a lati-
tude, which is a value from the type Latitude; a longitude, which is a value
drawn from the type Longitude; and an altitude modelled by a value drawn
from the type Altitude. Records, and other ways to construct more complex
types from simple types, are introduced in Chapter 5.

Often it is necessary to model more elaborate data than just single numbers,
characters or records. Frequently we will need to model collections such as sets
of values, sequences of values, or mappings from values of one collection to
values of another. These three kinds of data type (sets, sequences and mappings)
are central to the construction of models in VDM-SL – so much so that they each
warrant an entire chapter later in the book (Chapters 6 to 8). As an example of
their use, we could here define a model of the flight information on a radar screen
as a mapping from aircraft identifiers to aircraft positions. The mapping can be
thought of as a table associating aircraft identifiers with positions. In VDM-SL,
we would make the following type definition:

RadarInfo = map AircraftId to AircraftPosition

The type AircraftId would be defined elsewhere in the model. In a pro-
gramming language there are many different ways of implementing this data
structure (e.g. pointer-based tree structures, arrays, hash tables) but, early in
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1.5 The structure of a VDM-SL model 7

the development process, we may not be interested in precisely which structure
should be chosen. If the model has been constructed in order to analyse, for ex-
ample, the possibility of a “near miss” between aircraft being alerted, the space
efficiency of the data structure used to model the mapping is not a dominant
consideration, and so does not form part of the abstract model. At a later de-
velopment stage, this issue may become significant and so could form part of
a model used for space efficiency analysis. The use of an abstract modelling
language like VDM-SL in the early stages of design naturally encourages one to
think in this way, in terms of what concepts are needed in the model and not how
they are to be implemented.

Recursive data structures are common in software, and are especially signif-
icant in representing computer programs. Chapter 9 deals with such structures
including trees and graphs, and the recursive functions that can be used to con-
struct and traverse them.

1.5.2 Modelling functionality in VDM-SL
Given a collection of type definitions modelling system data, the sys-

tem’s behaviour is modelled by means of functions and operations defined on
the data model. For example, two functions of interest in the air traffic control
system might be functions to add a new aircraft, with its position, to the radar
information and a function to choose an aircraft to which landing permission is
to be granted.

The first function, to add a new aircraft which has just been detected by the
system, could be modelled as follows. Suppose the function is to be named
NewAircraft. When a function is defined, the types of its inputs and result
are given. In this case, the inputs are some radar information, the identifier of
the new aircraft and the position of the new aircraft. The result returned will
be a radar information mapping, the same as the input mapping, but with the
new aircraft and its position added. The types of the input and result are given
and the action performed by the function is described on some input parameters.
The function definition so far would be written as follows:

NewAircraft: RadarInfo * AircraftId * AircraftPosition ->
RadarInfo

NewAircraft(radar,airid,airpos) == ???

The “???” contains the body of the definition: an expression showing the value
of the result in terms of the input values supplied. In this case the result is just
the input mapping radar with airid and airpos added to it so that airid
maps to airpos. The details of the expression in the body of the function are
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8 1 Introduction

not of concern here: they will be dealt with in full in later chapters. In VDM-SL
this is written as follows:

NewAircraft: RadarInfo * AircraftId * AircraftPosition ->
RadarInfo

NewAircraft(radar,airid,airpos) ==
radar munion {airid |-> airpos}

The NewAircraft function should not be applied to add just any aircraft to the
radar information. It should only be applied when the newly detected aircraft is
indeed new, i.e. it does not already occur in the mapping. To record a restriction
on the circumstances in which a function may be applied, a pre-condition is
used. A pre-condition is a Boolean expression which is true only for those input
values to which the function may be applied. In this example, the pre-condition
must state that the input airid is not already in the input mapping radar.
Again, the details of the expression are not important and will be discussed in
later chapters.

NewAircraft: RadarInfo * AircraftId * AircraftPosition ->
RadarInfo

NewAircraft(radar,airid,airpos) ==
radar munion {airid |-> airpos}

pre airid not in set dom radar

The function definition given here is abstract. There is no information about the
details of how the new information is to be added to the mapping. It simply
states that the new identifier and position are to be added.

In some cases, it is possible to have an even more abstract function definition.
An implicit function definition, rather than stating what the result of the function
should be, simply characterises the result by saying what properties are required
of it. This technique is often valuable where we do not wish to have to give
an algorithm for calculating a result. For example, we may not be interested
in modelling the algorithm which is used to select an aircraft for landing, but
we do need a function which describes the selection of an aircraft, because we
will wish to model its removal from the radar information once the aircraft has
landed. In this case, we do not give a result expression, but instead give a post-
condition.

A post-condition is a logical expression which states how the result is to be re-
lated to the inputs. For this example, the function SelectForLanding takes
the radar information as input and returns an aircraft identifier as the result. The
post-condition states that the result is an identifier from the mapping, but goes
no further in suggesting how the result is chosen. A pre-condition is recorded
to assert that this function should only be applied when the radar information
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1.6 Analysing a model 9

is non-empty, i.e. there are some aircraft identifiers to choose from. Again, the
details of the expressions used will be dealt with in later chapters. The function
definition is as follows:

SelectForLanding(radar:RadarInfo) aircraft:AircraftId
pre dom radar <> {}
post aircraft in set dom radar

In a VDM-SL model, each function is self-contained in that the only data
which can be referred to in the function body are the input parameters. In par-
ticular, the function body has no access to any global variables. However, in this
example it is likely that many of the functions would need to access and possibly
update the radar information. There is a clear sense in which the radar informa-
tion is persistent, and the functions merely make changes to part of that radar
information. The functions in this case might be better expressed as procedures
with side-effects on global variables. For such situations it is possible to de-
scribe the persistent data in a state definition and record the modifications to the
state as operations. This state-based modelling style is the subject of Chapter 11.

The example used in this section does not reflect the size and complexity of a
realistic computing problem. Indeed, any course on modelling must use exam-
ples which fit into the textbook space available. However, Chapter 12 deals with
techniques for structuring large-scale models by splitting them into manageable,
and sometimes re-usable, modules.

1.6 Analysing a model
If a model is intended to form a basis for the development of software,

it is important to have confidence both in its internal consistency and in the ac-
curacy with which it records the customer’s original requirements. Checking
internal consistency involves ensuring that the language syntax has been cor-
rectly followed and that the functions can indeed be calculated on the values
provided as inputs (this is done by ensuring that operators are applied to values
of the correct types). A range of more demanding checks can also be performed:
for example, making sure that a function definition does not allow the invariant
on a data type to be violated. In addition, the model can be tested by supply-
ing sample input values and calculating the results of applying the functions to
these.

The process of increasing confidence in a model is called validation and is
described in detail in Chapter 10. When inconsistencies are discovered, or the
model does not correspond to expectations in some way, the model can be modi-
fied at this early stage in the development of the computing system, before going
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10 1 Introduction

on to detailed design. Early identification and resolution of errors prevents their
propagation into detailed design and code and subsequent, late and expensive,
correction. The issues surrounding the use of modelling in the commercial de-
velopment process are the subject of Chapter 13.

Summary
• Software developers have a difficult task, because of the complexity

of the systems they build and the characteristics of the material out of
which they are built. Nevertheless, some useful lessons can be learned
from other engineering disciplines. One of these is the value of models
of systems in the early stages of development.

• If used in the early stages of software development, models can ease
communication between developers and between developers and clients.
They can help identify deficiencies in understanding and in require-
ments and thus help to reduce rework costs in later development stages.

• To be useful, a model should be abstract (so that it is not too complex)
and rigorously defined, so that objective and repeatable analyses can be
performed.

• Formulating an abstract model using a notation with a fixed syntax
and semantics enables machine support and provides a communication
medium without ambiguity. Such a formal definition of a notation also
provides a means of resolving disputes about the meaning of a model.

• VDM-SL is an ISO-standard modelling language which has a formal
definition. It is part of a collection of techniques for analysing models
and developing software from them. In this book we will concentrate
only on the system modelling and analysis aspects.

• A model in VDM-SL contains definitions of the data and functionality
of a system.

• The data is represented through types which are built from simple basic
types such as characters and numbers. Values of these basic types can
be grouped into elements of more elaborate types such as records, sets,
sequences and mappings. Types may be restricted by invariants. Ab-
straction is obtained, where required, by allowing data values of arbi-
trary size and precision. A modelling language such as VDM-SL allows
the modeller the freedom to choose a level of abstraction appropriate to
the analysis in hand. In contrast, a model in a traditional programming
language may have to contain machine-specific details not relevant to
the model or analysis.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89911-6 - Modelling Systems: Practical Tools and Techniques in Software Development, Second
Edition
John Fitzgerald and Peter Gorm Larsen
Excerpt
More information

http://www.cambridge.org/9780521899116
http://www.cambridge.org
http://www.cambridge.org

