This groundbreaking single-authored textbook equips students with everything they need to know to truly understand this hugely topical field, including essential background on the clinical necessity of biomaterials, relevant concepts in biology and materials science, comprehensive and up-to-date coverage of all existing clinical and experimental biomaterials, and the fundamental principles of biocompatibility. Drawing on the author’s 40 years’ experience in biomaterials, this is an indispensable resource for students of biomaterials science and engineering studying these life-saving technological advances.

Featuring

- A new classification system for biomaterials, a systematized framework for biocompatibility theory, new concepts for tissue engineering templates, and applications for nanomaterials in medicine.
- Extensive case studies from a wide range of clinical disciplines, interwoven with the theory, equipping students with a practical understanding of the phenomena and mechanisms of biomaterials performance.
- A whole chapter dedicated to the biomaterials industry itself, including guidance on regulations, standards and guidelines, litigation, and ethical issues, to prepare students for industry.
- Informative glossaries of key terms, engaging end-of-chapter exercises, and up-to-date lists of recommended reading.

David Williams is a Professor at the Wake Forest Institute for Regenerative Medicine, North Carolina, with over 40 years’ experience in biomaterials science. He is Editor-in-Chief of the international journal Biomaterials, the President of the Tissue Engineering and Regenerative Medicine International Society, and a former Director of the UK Centre for Tissue Engineering at Liverpool University, where he is now an Emeritus Professor. In addition he is Advisory Professor of Shanghai Jiao Tong University, Visiting Chair Professor of Biomedical Materials, Taipei Medical University, a Visiting Professor of the Christiaan Barnard Department of Cardiothoracic Surgery, University of Cape Town, of the National University of Singapore, Tsinghua University, Beijing, Beihang University, Beijing, the University of New South Wales, Australia, and the Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvanthapuram, India. He has travelled extensively to promote excellence in scientific research and writing. He is a Fellow of the Royal Academy of Engineering, and has received numerous awards, including the 2012 Acta Biomaterialia Gold Medal.
“This is the long overdue single-author compendium students, scientists and clinicians were waiting for. Anyone expecting a dry scientific compilation will be pleasantly surprised by the wonderfully lively style in which Prof. Williams takes the reader on an exciting journey into the world of modern biomaterials and the opportunities it offers to patients. In a field long plagued by self-sustained paradigms, wrong models and wrong questions, this book boldly introduces each chapter on the basis of true clinical needs, taking the captivated reader into the deepest depths of material science and biology and eventually leaving him in a position where his own understanding and judgment has undergone a quantum leap.”

Peter Zilla
University of Cape Town, South Africa

“This revolutionary book provides a coherent synthesis of the entire field of biomaterials, from the underlying sciences, to its practical applications. The book is the culmination of thought from one of the leading pioneers in the field, David F. Williams, who has been active for over 45 years, and is able to bring together not only the importance of the subject matter, but also its historical perspective, and future trends. With a strategic focus of thought, this unique text is a seminal contribution that provides an invaluable and thorough resource for anyone interested in the biomaterials field, not just for students, but also for scientists, and government and industry personnel.”

Anthony Atala
Wake Forest University School of Medicine, USA

“This book distils the wide-ranging field of biomaterials down to critical topics, and presents them in an accessible and user-friendly way. In writing the book, the author applies his innovative ideas, vast knowledge, and rich experience to adroitly tackle the challenge of ‘less is more’ in processing a wealth of subject matter, placing a special focus on dynamic interactions between various biomaterials with complex biological systems, and translation of tissue engineering products to the clinic. Another valuable feature of this book is the pedagogical implications contained in each topic, which begins with a clear, simple diagram to introduce the reader to the core information, and ends with a number of questions to help the reader to integrate basic concepts into practice. Accordingly, this book provides a great reference for graduate students, researchers, and doctors specializing in biomaterials science. Such empowerment will inevitably lead to advancing the state of the art in the field.”

Xiaosong Gu
Nantong University, China

“David Williams is one of the leading international authorities in biomaterials. Drawing on his vast multidisciplinary experience in the field, Prof. Williams presents in this attractive textbook not only a comprehensive view of biomaterials in their various facets, but also innovative ideas, along with the clarity of thought and precision of expression that those who know him well have come to expect of him. Although written primarily for students in biomaterials curricula, I see this book as ‘a must’ for the personal and institutional library.”

C. James Kirkpatrick
Johannes Gutenberg University of Mainz, Germany
“This book provides the reader with the most up-to-date information on the ground-breaking revolutions in biomaterials sciences, and huge application potentials to overcome the most acute clinical challenges in the 21st-century. Reading this book is an academic enjoyment!”

Yan Li
Zhongnan Hospital of Wuhan University, China

“It is a remarkable achievement for any one individual, even if that individual is David Williams, to construct such an accomplished and authoritative text. Based on a lifetime spent in the field, this book is comprehensive, thought-provoking, and forward-looking, and is beautifully written and illustrated. While intended, primarily, as a student text, it is certain that there will be biocompatibility between this work and academics, clinicians, regulators, and industry practitioners alike, and it is destined to become a definitive biomaterials science text.”

Keith McLean
CSIRO, Australia

“As the advancement of medical science cures various diseases, the role of biomaterials and their applications in medicine is recognized as growing. Almost every week, new biomaterials are announced and launched in the market. This book is composed of several chapters containing important information with many beautiful illustrations and photographs, which help students to understand biomaterials from very basic to near clinical applications. As one of the unique points of this book, each chapter has a brief glossary of biological and medical terms, which may be unfamiliar for students.”

Teruo Okano
Tokyo Women’s Medical University, Japan

“Williams’ Essential Biomaterials Science combines comprehensive scope, single-authored consistency, and contemporary translational practicality in this novel textbook on biomaterials. The book clusters detailed considerations of materials, pathobiology, applications, regenerative therapeutics, and considerations of commercialization and clinical implementation, with an overriding focus on biocompatibility and concepts of biomaterial–tissue interactions, a key theme of Williams’ many contributions to and leadership in this field. Well-illustrated, particularly with conceptual graphics, well-referenced with suggested readings, and with end-of-chapter questions, the book is most likely to be most useful to university students at an advanced undergraduate or graduate level, and nicely complements other available references in adding to the richness and usefulness of literature in the field.”

Frederick Schoen
Brigham and Women’s Hospital, Harvard Medical School, USA

“This is an extraordinary, impressively thorough reference source and textbook. David Williams has a rare knack for clear communication. He draws on a unique combination of outstanding knowledge, remarkable experience, and a rare appreciation of the key concepts. This book is an absolutely essential, superbly comprehensive, and valuable resource for anyone who wants to truly understand the field of biomaterials.”

Tony Weiss
University of Sydney, Australia
Cambridge Texts in Biomedical Engineering

Series Editors
W. Mark Saltzman, Yale University
Shu Chien, University of California, San Diego

Series Advisors
Jerry Collins, Alabama A & M University
Robert Malkin, Duke University
Kathy Ferrara, University of California, Davis
Nicholas Peppas, University of Texas, Austin
Roger Kamm, Massachusetts Institute of Technology
Masaaki Sato, Tohoku University, Japan
Christine Schmidt, University of Florida
George Truskey, Duke University
Douglas Lauffenburger, Massachusetts Institute of Technology

Cambridge Texts in Biomedical Engineering provide a forum for high-quality textbooks targeted at undergraduate and graduate courses in biomedical engineering. It covers a broad range of biomedical engineering topics from introductory texts to advanced topics, including biomechanics, physiology, biomedical instrumentation, imaging, signals and systems, cell engineering, and bioinformatics, as well as other relevant subjects, with a blending of theory and practice. While aiming primarily at biomedical engineering students, this series is also suitable for courses in broader disciplines in engineering, the life sciences and medicine.
CONTENTS

Preface
page xvii

1 **The clinical necessity of biomaterials in the twenty-first century**
1.1 Health care products in medical practice 1
1.1.1 The ubiquitous low back pain 2
1.1.2 Sporting injuries and arthritis 3
1.1.3 The end of the road for cataracts 6
1.1.4 The challenge of Parkinson’s disease 6
1.1.5 The cath lab and beyond 8
1.1.6 Pulses and shocks in the heart 10
1.1.7 Care of the newborn 11
1.1.8 Diagnosing and treating breast cancer 12
1.1.9 The challenge of diabetes 13
1.1.10 The messy business of incontinence 15
1.2 The ubiquity of materials in clinical medicine 16
1.3 The biomaterials concept 17
1.4 The evolution of biomaterials science and the changing concepts 19
1.4.1 Early implantable devices 19
1.4.2 The emergence of regenerative medicine 20
1.4.3 Nanotechnology, diagnostics and drug delivery 21
1.4.4 The current definition of a biomaterial 22
1.5 The classification of biomaterials applications 22
1.6 The components of biomaterials science 22
Summary and learning objectives 26
Questions 27
Recommended reading 28

2 **Essential materials science**
2.1 Introduction 29
2.2 The basic materials model 30
2.3 Atoms, molecules, interatomic and intermolecular bonds 38
2.3.1 Atoms and the nature of elements 38
2.3.2 Interactions between atoms 40
2.3.3 Interactions between molecules 43
2.4 The organization of atoms and molecules: states of matter, crystalline and amorphous materials 44
2.4.1 The states of matter 44
2.4.2 Crystallinity 44
2.4.3 Macro-, micro- and nano structures 51
2.5 Surface properties of materials

2.5.1 Surface energy: the hydrophilic/hydrophobic balance 54
2.5.2 Surface chemistry 56
2.5.3 Surface topography 60
2.5.4 Techniques for surface modification 61
2.5.5 Special considerations at the nanoscale 65

2.6 Practical materials

2.6.1 Metals and alloys 65
2.6.2 Synthetic structural polymers, plastics, elastomers and textiles 68
2.6.3 Biopolymers 72
2.6.4 Ceramics, glasses and glass-ceramics 72
2.6.5 Bioceramics 73
2.6.6 Composites 73
2.6.7 Natural composites 75

2.7 Physical properties of materials

2.7.1 Thermal properties 76
2.7.2 Electrical properties 77
2.7.3 Electronic and optoelectronic properties 78
2.7.4 Magnetic properties 81
2.7.5 Ultrasound 82

2.8 Mechanical properties of materials

2.8.1 Forces and stress: deformation and strain 83
2.8.2 Elasticity and plasticity 85
2.8.3 Fracture, ductility and toughness 88
2.8.4 Time-dependent deformation: fatigue, creep and viscoelasticity 93
2.8.5 Hardness 96
2.8.6 Friction and wear 96

2.9 Corrosion and degradation mechanisms

2.9.1 Metallic corrosion 101
2.9.2 Polymer degradation 106
2.9.3 Ceramic degradation 110
2.9.4 Performance of composites 112

2.10 Synthesis, fabrication and manufacturing considerations

2.10.1 Metallurgical processes 112
2.10.2 Polymer processing 113
2.10.3 Ceramic processing 114
2.10.4 Composites 115
2.10.5 Sterilization 115

2.11 Environmental responsiveness

2.11.1 Thermally responsive polymers 116
2.11.2 pH responsive materials 118
2.11.3 Shape memory materials 118

2.12 Special considerations

2.12.1 Nanoparticles as biomaterials 119
3 Biocompatibility pathways

3.1 Introduction

3.2 The fundamental biocompatibility paradigm

3.2.1 Some general principles

3.2.2 The components of biocompatibility

3.2.3 A systems approach

3.3 Biocompatibility scenarios

3.3.1 Introduction to biocompatibility mechanisms and pathways

3.3.2 Scenario A: Mechanisms of biocompatibility that do not rely on direct chemical interactions between the biomaterial and the host

3.3.3 Scenario B: Mechanisms of biocompatibility involving chemical reactions between macroscale biomaterials and their soluble derivatives with the host

3.3.4 Scenario C: Mechanisms of biocompatibility involving microscale biomaterials and microparticles

3.3.5 Scenario D: Mechanisms of biocompatibility involving nanoscale biomaterials

3.3.6 Scenario E: Mechanisms of biocompatibility involving delivery of pharmaceutical agents from macroscale biomaterials to host

3.4 Systemic or remote site biocompatibility

3.4.1 Reproductive toxicology

3.4.2 Carcinogenicity

3.4.3 Autoimmunity

3.5 The unified framework of biocompatibility

3.5.1 The generic biocompatibility pathway

3.5.2 Target cells, defensive cells and interfering cells

3.5.3 Cellular mechanisms in biocompatibility pathways

3.6 Specific clinical examples of biocompatibility phenomena

3.6.1 Osteoinduction, osteoconduction and osseointegration

3.6.2 Heart valves

3.6.3 Blood vessels

3.6.4 Nerve repair

3.7 Influences of bacteria, fungi, viruses, prions and endotoxins

3.7.1 Biofilms

3.7.2 Material variables and bacterial adhesion

3.7.3 Clinical aspects

3.7.4 Avoidance and treatment of bacterial infection
4 Implantable medical devices and artificial organs

4.1 Orthopedics
4.1.1 Joint replacement
4.1.2 Ligaments and tendons
4.1.3 The spinal column
4.1.4 Bone defects
4.1.5 Bone fracture
4.1.6 Cartilage defects

4.2 The cardiovascular system
4.2.1 Arteries and veins
4.2.2 Valves
4.2.3 Congenital heart defects
4.2.4 Myocardial infarction
4.2.5 Arrhythmias
4.2.6 Heart failure

4.3 The major organs: liver, kidney, lungs, pancreas
4.3.1 The kidney: hemodialysis
4.3.2 The lungs: extracorporeal membrane oxygenation
4.3.3 The liver
4.3.4 The pancreas: insulin pumps

4.4 Eyes and ears
4.4.1 Contact lenses
4.4.2 Intraocular lenses
4.4.3 Glaucoma
4.4.4 Retina and artificial vision
4.4.5 External ear
4.4.6 Middle ear
4.4.7 Cochlear

4.5 Central nervous system
4.5.1 Hydrocephalus shunts
4.5.2 Deep brain stimulator
4.5.3 Neural recording electrodes
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Genito-urinary system</td>
<td>296</td>
</tr>
<tr>
<td>4.6.1 The bladder</td>
<td>296</td>
</tr>
<tr>
<td>4.6.2 The overactive bladder in children</td>
<td>296</td>
</tr>
<tr>
<td>4.6.3 Ureteral patency</td>
<td>296</td>
</tr>
<tr>
<td>4.6.4 Urinary incontinence</td>
<td>297</td>
</tr>
<tr>
<td>4.6.5 Pelvic organ prolapse</td>
<td>298</td>
</tr>
<tr>
<td>4.6.6 Penile reconstruction</td>
<td>299</td>
</tr>
<tr>
<td>4.6.7 Testicular implants</td>
<td>299</td>
</tr>
<tr>
<td>4.7 Gastrointestinal system</td>
<td>299</td>
</tr>
<tr>
<td>4.7.1 Gastric bands</td>
<td>299</td>
</tr>
<tr>
<td>4.7.2 Anti-reflux devices</td>
<td>300</td>
</tr>
<tr>
<td>4.7.3 Gastrointestinal stents</td>
<td>300</td>
</tr>
<tr>
<td>4.8 Reproductive system</td>
<td>300</td>
</tr>
<tr>
<td>4.8.1 Intravaginal devices</td>
<td>301</td>
</tr>
<tr>
<td>4.8.2 Intrauterine devices</td>
<td>301</td>
</tr>
<tr>
<td>4.9 Dentistry, maxillofacial and craniofacial tissues</td>
<td>301</td>
</tr>
<tr>
<td>4.9.1 Oral cancer</td>
<td>301</td>
</tr>
<tr>
<td>4.9.2 Dental implants</td>
<td>302</td>
</tr>
<tr>
<td>4.9.3 Craniofacial reconstruction</td>
<td>302</td>
</tr>
<tr>
<td>4.10 General soft tissue repair, replacement and augmentation</td>
<td>303</td>
</tr>
<tr>
<td>4.10.1 Hernia</td>
<td>303</td>
</tr>
<tr>
<td>4.10.2 Breast reconstruction</td>
<td>304</td>
</tr>
<tr>
<td>4.11 Commentary on implantable devices</td>
<td>306</td>
</tr>
<tr>
<td>Summary and learning objectives</td>
<td>306</td>
</tr>
<tr>
<td>Questions</td>
<td>308</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>309</td>
</tr>
<tr>
<td>5 Regenerative medicine and tissue engineering</td>
<td>313</td>
</tr>
<tr>
<td>5.1 Introduction to regenerative medicine</td>
<td>313</td>
</tr>
<tr>
<td>5.2 The basic tissue engineering paradigms</td>
<td>315</td>
</tr>
<tr>
<td>5.3 Cells for tissue engineering</td>
<td>319</td>
</tr>
<tr>
<td>5.3.1 Cell sources</td>
<td>319</td>
</tr>
<tr>
<td>5.3.2 Principles of cell manipulation</td>
<td>331</td>
</tr>
<tr>
<td>5.3.3 Cell patterning</td>
<td>332</td>
</tr>
<tr>
<td>5.3.4 Cell sheet engineering</td>
<td>332</td>
</tr>
<tr>
<td>5.4 Biomolecules and nutrients for tissue engineering</td>
<td>334</td>
</tr>
<tr>
<td>5.4.1 Culture media and oxygenation</td>
<td>335</td>
</tr>
<tr>
<td>5.4.2 Growth factors</td>
<td>338</td>
</tr>
<tr>
<td>5.4.3 Gene transfer in tissue engineering</td>
<td>339</td>
</tr>
<tr>
<td>5.5 Biomaterials for regenerative medicine and tissue engineering</td>
<td>340</td>
</tr>
<tr>
<td>5.5.1 Background</td>
<td>340</td>
</tr>
<tr>
<td>5.5.2 The concept of tissue engineering templates</td>
<td>341</td>
</tr>
<tr>
<td>5.5.3 The objectives of tissue engineering templates</td>
<td>342</td>
</tr>
</tbody>
</table>
5.5.4 Classification of tissue engineering templates 343
5.5.5 Specifications for template materials 344
5.5.6 Specific types of template material 352
5.5.7 Fluid mechanics and templates 360
5.5.8 Fabrication routes for solid templates 362
5.5.9 Bioprinting and organ printing 366
5.6 Tissue engineering and clinical reality 367
 5.6.1 Bone tissue engineering 367
 5.6.2 Cartilage tissue engineering 369
 5.6.3 Skin tissue engineering 371
 5.6.4 Skeletal muscle tissue engineering 373
 5.6.5 Vascular tissue engineering 376
 5.6.6 Cardiac tissue engineering: the myocardium 378
 5.6.7 Cardiac tissue engineering: heart valves 382
 5.6.8 Nerve tissue engineering 383
 5.6.9 Urological tissue engineering 384
 5.6.10 Airway tissue engineering 386
5.7 Tissue engineering of constructs for drug testing and tumor models 388

Summary and learning objectives 389
Questions 390
Recommended reading 391

6 Drug and gene delivery 393
 6.1 Introduction to active molecule delivery 393
 6.1.1 Rationale for drug delivery technologies 394
 6.1.2 Oral drug delivery 399
 6.2 Non-oral delivery of conventional drugs 400
 6.2.1 Transdermal delivery 400
 6.2.2 Implantable electromechanical systems 404
 6.3 Drug release from solid polymers in monolithic devices 404
 6.3.1 Mechanisms of release 406
 6.3.2 Solid polymers for drug release 408
 6.4 Drug release from microparticulate and nanoparticulate systems 409
 6.4.1 Microparticles and drug delivery 410
 6.4.2 Nanoparticles and drug delivery 411
 6.5 Polymer therapeutics 415
 6.5.1 Polymeric drugs 416
 6.5.2 Polymer–active agent conjugates 417
 6.5.3 Polymer architecture 420
 6.6 Cancer: chemotherapy and immunotherapy 421
 6.6.1 Localized delivery of chemotherapeutic agents 421
 6.6.2 Targeting chemotherapeutic agents to tumors 421
 6.7 Gene therapy and transfer 426
 6.7.1 The concept of gene therapy 426
6.7.2 Viral vectors 426
6.7.3 Non-viral vectors 428
6.8 Vaccines 434
6.9 Antimicrobial agents 435
 6.9.1 Antibacterial agents and antibiotics 435
6.10 Combinations of systems 439
 6.10.1 Theranostic agents 441
 6.10.2 Drug-device combinations 443
Summary and learning objectives 443
Questions 444
Recommended reading 445

7 Imaging and diagnostic systems 448
 7.1 Introduction 448
 7.1.1 Anatomical and functional imaging 448
 7.1.2 Principles of molecular imaging 450
 7.2 Magnetic resonance imaging 451
 7.2.1 T1 agents 453
 7.2.2 T2 agents 453
 7.2.3 CEST and PARACEST 454
 7.2.4 19F agents 455
 7.3 CT imaging 455
 7.4 PET and SPECT imaging 456
 7.5 Ultrasound imaging 458
 7.6 Optical imaging 459
 7.6.1 Upconversion nanoparticles 460
 7.6.2 Quantum dots 463
 7.7 Multi-modal imaging 466
 7.8 Theranostics 466
 7.9 Biosensors 467
 7.9.1 The principles of sensing chemical and biological agents in tissues 467
 7.9.2 Enzyme-based biosensors 467
 7.9.3 Immunosensors 468
 7.10 General comments on nanoparticle toxicity in imaging systems 469
 7.10.1 Clinically observed effects 469
 7.10.2 Nanoparticle toxicity and biodistribution 470
Summary and learning objectives 470
Questions 472
Recommended reading 473

8 Contemporary and future biomaterials 475
 8.1 The classification of biomaterials 476
 8.2 Class 1 The metallic systems 477
 8.2.1 Class 1.1 Titanium and titanium alloys 477
Class 1.2 Iron and steels 481

Class 1.3 Cobalt-based alloys 484

Class 1.4 Nickel-based alloys 486

Class 1.5 Tantalum and zirconium alloys 487

Class 1.6 Silver 488

Class 1.7 Platinum group metals and alloys 489

Class 1.8 Gold 492

Class 1.9 Magnesium and its alloys 493

Class 2 The ceramics systems 495

Class 2.1 Oxides 497

Class 2.2 Phosphates 505

Class 2.3 Sulfates 507

Class 2.4 Silicates and silica-based glasses 507

Class 2.5 Nitrides 508

Class 2.6 Carbides 508

Class 2.7 Titanates 509

Class 2.8 Optically active ceramic/metalllic nanoparticles 510

Class 3 The polymeric systems 511

Class 3.1 Thermoplastic polymers 515

Class 3.2 Thermosetting resins 525

Class 3.3 Synthetic polymeric sols and gels 525

Class 3.4 Proteins and peptides 529

Class 3.5 Polysaccharides 537

Class 3.6 Lipids 542

Class 3.7 Biodegradable structural polymers 544

Class 3.8 Water-soluble polymers 554

Class 3.9 Polymers with ionizable or ionic groups 557

Class 3.10 Elastomers 559

Class 3.11 Fibers, fabrics and textiles 565

Class 3.12 Environmentally responsive polymers 568

Class 4 Carbon materials 568

Class 4.1 Diamond and diamond-like materials 569

Class 4.2 Graphitic materials 572

Class 4.3 Glassy or vitreous carbon 573

Class 4.4 Hexagonally bonded carbon nanostructures 573

Class 5 Composite materials 575

Class 5.1 Fiber reinforced thermoplastic polymers 576

Class 5.2 Fiber reinforced resins 576

Class 5.3 Ceramic microparticle reinforced biostable polymers 576

Class 5.4 Ceramic microparticle reinforced biodegradable polymers 577

Class 5.5 Nanocomposites 577

Class 6 Engineered biological materials 577

Class 6.1 Autologous tissues 580
Biomaterials are crucial components of many health care products. They are in the news daily as we hear of new devices that allow deaf people to hear, and of techniques to return patients to a near normal life after a heart attack. Headlines tell us of titanium dental implants, ceramic artificial hips, carbon heart valves, collagen cosmetic injections and clear plastic lenses in the eye. Science magazines talk of new drug–biomaterial combinations that are radically altering cancer chemotherapy and immunotherapy and of nanoscale contrast agents that give far more power to MRI and CT imaging systems for better and earlier disease diagnosis. Biomaterials save lives and improve the quality of life for millions of people.

The science that underpins these advances is, not surprisingly, called biomaterials science. It has grown and developed from tentative beginnings half a century ago into a major academic and clinical discipline today. This science is both multidisciplinary and interdisciplinary since it brings together many classical disciplines of science, engineering and medicine, but also adds new knowledge that fits within the gaps between the classical subjects.

Biomaterials science is one of the most attractive subjects in any curriculum and is taught in colleges and universities across the globe. Students of biomaterials science go on to become research scientists at the forefront of medical technologies, clinicians who actually use biomaterials-based products on a daily basis, industrialists who manufacture the products, regulators who decide what can and can’t be used in clinical practice or a practitioner of any one of the other contributory professions. It is obvious that these students need a textbook to guide them through the complexities of the individual components that make up biomaterials science. That is the rationale for this book, *Essential Biomaterials Science*.

It will be evident from the above comments that the compilation of all of the essential features of biomaterials science in a single book is not a trivial task, since these essentials cover so many different themes. For this reason, most books on this subject are multi-author books, with individual contributions from many different scientists and clinicians, brought together by a panel of editors. *Essential Biomaterials Science* is different. It is the work of a single author. It brings together, with one style, the various components of biomaterials science and integrates them, hopefully with little repetition and few gaps, into a logical story. It covers the essential underlying sciences, both materials/engineering sciences and biological sciences, and the clinical applications.

I have spent over 40 years working in the area of biomaterials science, developing the understanding of the subject that allows such a book to be written. I wrote one of the first textbooks on biomaterials and medical devices in the early 1970s (Williams and Roaf, *Implants in Surgery*, W.B. Saunders) and my own research work, writing and teaching has covered many of the scientific areas that are discussed in this book. In addition I have been the Editor-in-Chief of the premier research journal in this field,
Biomaterials, since 2001, a position that has allowed me to monitor and influence the developments on a global basis.

Essential Biomaterials Science is primarily intended as a textbook for students who are studying biomaterials at senior undergraduate and postgraduate levels. It should also serve as a reference source for anyone, at any level, who utilizes biomaterials in the course of their professional work. This especially includes those at post-doctoral or early faculty levels whose major disciplines have not been materials science, but also those in industry, regulatory or legal professions who regularly deal with health care products.

The book starts with an introduction to the world of biomaterials and medical devices served through a series of exemplars of current clinical practices that employ health care products routinely. Chapter 2 covers the essentials of materials science that underpin these clinical uses. In many ways Chapter 3 can be considered as the heart of the book since it deals with the mechanisms whereby the materials science and biology intersect, that is within the subject of biocompatibility; here a new unified framework of biocompatibility mechanisms is presented. Chapters 4 to 7 deal with the four main clinical applications, of implantable medical devices and artificial organs, tissue engineering and regenerative medicine, drug and gene delivery, and imaging and diagnostic systems. Chapter 8 comprehensively guides the reader through the array of current and potential biomaterials, with a new system for their classification. The final chapter discusses some of the infrastructure issues, including ethics, regulation and litigation.

In each chapter there are summaries of learning outcomes, glossaries, lists of recommended further reading and sample questions. The reading matter includes some other textbooks (marked *) but mainly provides citations to major review and opinion papers that take the reader more deeply into critical issues. All of these have been carefully chosen, mostly from the current literature and each citation includes a brief summary of the content of the work. Since this is a textbook, there are no references to support individual statements. I have also resisted the temptation to refer to commercial products and trade names since these are often ephemeral and become out-dated quickly. Occasionally a trade name becomes a generic descriptor and these are sparingly introduced. The glossaries are included in order to supply definitions of key individual terms, whose meanings may not be intuitively obvious.

The views expressed in this book mostly reflect my own beliefs, philosophies and prejudices and I therefore take full responsibility for the whole of the contents. Naturally I have been influenced by the writing and lectures of very many individuals, in many different countries and cultures. It is inappropriate to single out any such individuals here, but hopefully many of them will read or glance at this book and recognize where their thoughtful contributions have had an impact. Several of these colleagues have generously provided original artwork for illustrations; their collective support is gratefully acknowledged here and full credit is given to each in the relevant captions. I am very grateful to the staff at Cambridge University Press, especially Michelle Carey and Elizabeth Horne, for their guidance during the five years it has taken to prepare the book.
Most people who work in the area of biomaterials science will be aware that I have been supported in all of my endeavors by my wife, Peggy. Contributors to the journal *Biomaterials* will recognize her role, as Managing Editor of the journal, in coordinating much of the work that is published on this subject. Countless others have met her on our many biomaterials-related journeys around the world. Without her constant and unwavering support this book could not have been written. Too many days and nights have been spent, in North Carolina, South Africa and elsewhere, researching, writing and compiling the book, and her support, both practical and emotional, has been invaluable. My debt to Peggy is publicly acknowledged here.