
Introduction

So this book is going to be about the style of mathematics. Does it mean I
am going to ignore the substance of mathematics? To some extent, I do, but
then again not: the two dimensions are distinct, yet they are not orthogonal,
so that stylistic preferences inform the contents themselves, and vice versa.
For an example, I shall now take a central work of Hellenistic mathematics –
Archimedes’ Spiral Lines – and read it twice, first – very quickly – for its
contents, and then, at a more leisurely pace, for its presentation of those
contents. Besides serving to delineate the two dimensions of style and
content, this may also serve as an introduction to our topic: for Spiral Lines
is a fine example of what makes Hellenistic science so impressive, in both
dimensions. For the mathematical contents, I quote the summary in Knorr
1986: 161 (fig. 1):

The determination of the areas of figures bounded by spirals further illustrates
Archimedes’ methods of quadrature. The Archimedean plane spiral is traced out
by a point moving uniformly along a line as that line rotates uniformly about
one of its endpoints. The latter portion of the treatise On Spiral Lines is devoted
to the proof that the area under the segment of the spiral equals one-third the
corresponding circular sector . . . The proofs are managed in full formal detail in
accordance with the indirect method of limits. The spirals are bounded above
and below by summations of narrow sectors converging to the same limit of one-
third the entire enclosing sector, for the sectors follow the progression of square
integers. This method remains standard to this very day for the evaluation of
definite integrals as the limits of summations.

Since I intend this book to be readable to non-mathematicians, I shall not
try to explain here the geometrical structure underlying Knorr’s exposition.
Suffice for us to note the great elegance of the result obtained – precise
numerical statements concerning the values of curvilinear, complex areas.
Note the smooth, linear exposition that emerges with Knorr’s summary,
as if the spiral lines formed a strict mathematical progression leading to a
quadrature, based on methods that in turn (in the same linear progression,
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now projected into historical time) serve to inform modern integration.
One bounds a problem – the spiral contained between external and internal
progressions of sectors – and one then uses the boundaries to solve the
problem – the progression is summed up according to a calculation of
the summation of a progression of square integers. Such is the smooth,
transparent intellectual structure suggested by Knorr’s summary.

Let us see, now, how this treatise actually unfolds – so as to appreciate
the achievement of Hellenistic mathematics in yet another, complementary
way.

We first notice that the treatise is a letter, addressed to one Dositheus –
known to us mainly as Archimedes’ addressee in several of his works.1 The
social realities underlying the decision made by several ancient authors, to
clothe their treatises as letters, are difficult for us to unravel. A lot must have
to do with the poetic tradition, from Hesiod onwards, of dedicating the
didactic epic to an addressee, as well as the prose genre of the letter-epistle
as seen, e.g., in the extant letters of Epicurus.2 The nature of the ancient
mathematical community – a small, scattered group of genteel amateurs –
may also be relevant.3 In this book we shall return time and again to the
literary antecedents of Hellenistic mathematics, as well as to its character
as refined correspondence conducted inside a small, sophisticated group –
but this of course right now is nothing more than a suggestion.

1 See Netz 1998b for some more references and for the curious fact, established on onomastic grounds,
that Dositheus was probably Jewish.

2 I return to discuss this in more detail on pp. 104–5 below.
3 See Netz 1999, ch. 7 for the discussion concerning the demography of ancient mathematics.
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Introduction 3

Let us look at the introduction in detail. Archimedes mentions to
Dositheus a list of problems he has set out for his correspondents to
solve or prove. Indeed, he mentions now explicitly – apparently for the
first time – that two of the problems were, in fact, snares: they asked the
correspondents to prove a false statement. All of this is of course highly
suggestive to our picture of the Hellenistic mathematical exchange. But
even before that, we should note the texture of writing: for notice the
roundabout way Archimedes approaches his topic. First comes the general
reminder about the original setting of problems. Then a series of such
problems is mentioned, having to do with the sphere. Archimedes points
out that those problems are now solved in his treatise (which we know
as Sphere and Cylinder ii), and reveals the falsity of two of the problems.
Following that, Archimedes proceeds to remind Dositheus of a second
series of problems, this time having to with conoids. We expect him to tell
us that some of those problems were false as well, but instead he sustains
the suspense, writing merely that the solutions to those problems were not
yet sent. We now expect him to offer those solutions, yet the introduction
proceeds differently:4

After those [problems with conoids], the following problems were put forward
concerning the spiral – and they are as it were a special kind of problems, having
nothing in common with those mentioned above – the proofs concerning which
I provide you now in the book.

So not a study of conoids, after all. We now learn all of a sudden – four
Teubner pages into the introduction – that this is going to be a study of
spirals. And we are explicitly told that these are “special,” “having nothing
in common” – that is, Archimedes explicitly flaunts the exotic nature of
the problems at hand. We begin to note some aspects of the style: suspense
and surprise; sharp transitions; expectations raised and quashed; a favoring
of the exotic. No more than a hint of that, yet, but let us consider the
unfolding of the treatise.

Now that the introduction proper begins, Archimedes moves on to
provide us with an explicit definition of the spiral (presented rigorously
but discursively as part of the prose of the introduction), and then asserts
the main goals of the treatise: to show (i) that the area intercepted by the
spiral is one third the enclosing circle; (ii) that a certain line arising from
the spiral is equal to the circumference of the enclosing circle; (iii) that
the area resulting from allowing the spiral to rotate not once but several
times about the starting-point is a certain fraction of the enclosing circle,
4 Heiberg 1913: 13–17.
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4 Introduction

defined in complex numerical terms; and finally (iv) that the areas bounded
between spirals and circles have a certain ratio defined in a complex way.
Following that Archimedes recalls a lemma he shall use in the treatise
(used by him elsewhere as well, and known today, probably misleadingly,
as “Archimedes’ Axiom”). At this point the next sentence starts with �� ��
���� ���	
 ����
, “if on some line,” i.e. without any particle, so that
the reader’s experience is of having plunged into a new sequence of prose
and, indeed, the proofs proper abruptly begin here.

Before we plunge ourselves into those proofs, I have two interrelated
comments on the introduction. The first is that the sequence of goals
seems to suggest an order for the treatise, going from goal (i), through (ii)
and (iii), to (iv). The actual order is (ii) – (i) – (iii) – (iv). The difference is
subtle, and yet here is another example of an expectation raised so as to be
quashed. The second is that the goals mentioned by Archimedes are put
forward in the discursive prose of Greek mathematics of which we shall
see many examples in the book – no diagram provided at this point, no
unpacking of the meaning of the concepts. The result is a thick, opaque
texture of writing, for example, the third goal:

And if the rotated line and the point carried on it are rotated for several rotations
and brought back again to that from which they have started out, I say that of
the area taken by the spiral in the second rotation: the <area> taken in the third
<rotation> shall be twice; the taken in the fourth – three times; the taken in the
fifth – four times; and always: the areas taken in the later rotations shall be, by the
numbers in sequence, multiples of the <area> taken in the second rotation, while
the area taken in the first rotation is a sixth part of the area taken in the second
rotation.

This is not the most opaque stated goal – the most opaque one is (iv). In
fact I think Archimedes’ sequence from (i) to (iv) is ordered in a sequence
of mounting opaqueness, gradually creating a texture of prose that is heavy
with difficult, exotic descriptions, occasionally rich in numerical terms.
One certainly does not gain the impression that Archimedes’ plan was to
make the text speak out in clear, pedagogic terms.

This is also clear from the sequence of the proofs themselves. For no
effort is made to explain their evolving structure. We were told to expect a
treatise on measuring several properties of spirals, but we are first provided
with theorems of a different kind. The first two propositions appear like
physical theorems: for instance, proposition 2 shows that if two points
are moved in uniform motions (each, a separate motion) on two separate
straight lines, two separate times [so that altogether four lines are traced by
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the two points each moving twice] the resulting lines are proportional. (See
fig. 2.) Modern readers cannot but be reminded of Aristotle’s Physics,5 but
for Archimedes’ contemporary reader probably what came most to mind –
as the scientific field where motions are discussed – was astronomy.6 All the
more surprising, then, that the motions discussed are along a straight line –
i.e. related, apparently, neither to stars nor to spirals. It should be stressed
that Archimedes simply presents us with the theorems, without a word of
explanation of how they function in the treatise. So the very beginning
does two things: it surprises and intrigues us by pointing in a direction we
could not expect (theorems on linear motion!), and it underlines the fact
that this treatise is about to involve a certain breaking down of the border
between the purely theoretical and the physical. Instead of papering over
the physical aspect of the treatise, Archimedes flags it prominently at the
very beginning of the treatise. (I shall return to discuss this physical aspect
later on.)

Do we move from theorems on linear motion to theorems on circular
motion? This would be the logical thing to expect, but no: the treatise
moves on to a couple of observations (not even fully proved) lying at the
opposite end of the scientific spectrum, so to speak: from the physical
theorems of 1–2 we move to observations 3–4 stating that it is possible
in general to find lines greater and smaller than other given circles – the
stuff of abstract geometrical manipulation. No connection is made to the
previous two theorems, no connection is made to the spiral.

5 See e.g. the treatment of the proportions of motion in such passages as Physics vii.5.
6 By the time Archimedes comes to write Spiral Lines, Aristotle’s Lyceum was certainly of relatively

little influence. The texts of course were available (see Barnes 1997), but, for whatever reason, they
had few readers (Sedley 1997 suggests that the very linguistic barrier – Attic texts in a koine-speaking
world – could have deterred readers). On the other hand, it does appear that Archimedes admired
Eudoxus above all other past mathematicians, and would probably expect his audience to share his
admiration. (Introduction to SC i, Heiberg 4.5, 11; introduction to Method, Heiberg 430.2, in both
places implicitly praising himself for rising to Eudoxus’ standard. No other past mathematician is
mentioned by Archimedes in such terms.) Eudoxus was, among other things, the author of On Speeds
(the evidence is in Simplicius, on Arist. De Cael. 488.3 ff.) – an astronomical study based on the
proportions of motion. I believe this would be the natural context read by Archimedes’ audience
into the first propositions of Spiral Lines.
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And immediately we switch again: if 1–2 were physical, while 3–4
were rudimentary geometrical observations, now we have a much richer
sequence of pure geometry. So pure, that the relation to the spiral becomes
even more blurred. Propositions 5–9 solve interesting, difficult problems
in the geometry of circles, involving complex, abstruse proportions: for
instance (proposition 8):

Given a circle and, in the circle, a line smaller than the diameter, and another,
touching the circle at the end of the <line>7 in the circle: it is possible to produce
a certain line from the center of the circle to the <given> line, so that the <line>
taken of it between the circumference of the circle and the given line in the circle
has to the <line> taken of the tangent the given ratio – provided the given ratio
is smaller than that which the half <line> of <line> given in the circle has to the
perpendicular drawn on it from the center of the circle.

(In terms of fig. 3, the claim is that given a line in the circle A� and the
tangent there ��, as well as the ratio Z:H, it is possible to find a line KN
so that BE:BI::Z:H.) A mind-boggling, beautiful claim – of little obvious
relevance to anything that went before in the treatise, or to the spirals
themselves.

But this is as nothing compared to what comes next. For now comes a
set of two propositions that do not merely fail to connect in any obvious
way to the spirals – they do not connect obviously to anything at all. These
are very difficult to define. Archimedes’ readers would associate them with
proportion theory, perhaps, or with arithmetic, but mostly they would
consider those proofs to be sui generis. They would definitely consider

7 Here and in what follows, text inside pointed brackets is my supplying of words elided in the original,
highly economic Greek.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-89894-2 - Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic
Reviel Netz
Excerpt
More information

http://www.cambridge.org/9780521898942
http://www.cambridge.org
http://www.cambridge.org


Introduction 7

A

I
K

M
N

O

�

�
�

�

�

B

E
Z

H

Figure 4

them enormously opaque. I quote the simpler enunciation among them,
that of proposition 10:

If lines, however many, be set consecutively, exceeding each other by an equal
<difference>, and the excess is equal to the smallest <line>, and other lines be
set: equal in multitude to those <lines mentioned above>, while each is <equal>
in magnitude to the greatest <line among those mentioned above>, the squares
on the <lines> equal to the greatest <i.e. the sum of all such squares>, adding in
both: the square on the greatest, and the <rectangle> contained by: the smallest
line, and by the <line> equal to all the <lines> exceeding each other by an equal
<difference> – shall be three times all the squares on the <lines> exceeding each
other by an equal <difference>.

In our terms, in an arithmetical progression a1, a2, a3, . . . , an where the
difference between the terms is always equal to the smallest a1, the following
equation holds:

(n + 1)an
2 + (a1 ∗ (a1 + a2 + a3 + · · · + an))

= 3(a1
2 + a2

2 + a3
2 + · · · + an

2)

This now makes sense, to some of us – but this is only because it is
put forward in familiar terms, and such that serve to make the parsing of
equations a lot easier.8 The original was neither familiar to its readers nor
spelled out in a friendly format. This was a take-it-or-leave-it statement
of a difficult, obscure claim. And the proof does not get any easier. The
addition of a diagram (fig. 4) certainly helps to parse the claim, but the
operations are difficult, involving a morass of calculations whose thread is
difficult to follow (I quote at random):

8 It is also helpful to try and check the validity of the equation, so try this: with 1, 2, 3, 4 you have
(5∗16)+(1∗10) = 3(1+4+9+16), which is in fact correct!
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8 Introduction

and since two <rectangles> contained by B, I are equal to two <rectangles> con-
tained by B,� . . . [a long list of similar equalities] and two <rectangles contained>
by �, � are equal to the <rectangle contained> by � and the <line> six times
� – since � is three times � . . . [a statement of a set of similar equalities, stated
in a complex abstract way] – so all <rectangles taken twice>, adding in the
<rectangle> contained by � and by the <line> equal to A, B, �, �, E, Z, H,
�, shall be equal to the <rectangle> contained by � and by the <line> equal to
all: A and three times B and five times �, and ever again, the following line by the
odd multiple at the sequence of odd numbers.

We see that no effort is made to compensate for the obscurity of the
enunciation by a proof clearly set out. The difficulty of parsing the state-
ments is carried throughout the argument, serving to signal that this pair
of propositions, 10–11, is a special kind of text, marked by its exotic nature.

We also notice that a new kind of genre-boundary is broken. If the
first two propositions were surprising in their physical nature (having to
do with a study of motions along lines), these two propositions 10–11
depend on calculation and in general suggest an arithmetical, rather than a
geometrical context. One can say in general that Greek geometry is defined
by its opposition to two outside genres. It is abstract rather than concrete,
marking it off from the physical sciences, while, inside the theoretical
sciences, it is marked by its opposition to arithmetic.9 Archimedes, in this
geometrical treatise, breaks through the genre-boundaries with both physics
and arithmetic.

And yet this is geometry, indeed the geometry of the spiral. We were
almost made to forget this, in the surprising sequence going from physics,
through abstract, general geometrical observations, via the geometry of

9 In Aristotle’s architecture of the sciences we often see the exact sciences as falling into geometrical
and arithmetical, in the first place, and then the applied sciences related to them (e.g. music to
arithmetic, optics to geometry: An. Post. 75b15–17, 78b37–9). Plato’s system of mathēmata famously
(Resp. 525a–531d) includes arithmetic, geometry, astronomy and music, with stereometry uneasily
accommodated: since astronomy is explicitly related to stereometry, Plato would presumably have
meant his audience to keep in mind the relationship of music to arithmetic, though he merely points
out in the conclusion of this passage that the relationship between the sciences is to be worked out
(530c9–d4), and he does echo the Pythagorean notion of “sisterhood” of astronomy and music (they
are, more precisely, cousins) – perhaps derived from Archytas’ fr. 1 l.7 (Huffman 2005: ii.1.). It is not
clear that anyone in Classical Antiquity other than Aristotle would have explicitly objected to the
mixing of scientific disciplines (Late Antiquity is of course already much more self-conscious of such
boundaries; it is curious to note that, when Eutocius makes an apology for what he perceives to be a
potentially worrisome contamination of geometry by arithmetic – In Apollonii Conica, Heiberg 1893:
ii.220 ll. 17–25 – he relies explicitly on the notion of the sisterhood of the disciplines!); the same is
true, in fact, for literary genres. It may well be that the explicit notion of a scientific discipline – as
well as a literary genre – in the age of Aristotle could, paradoxically, facilitate the hybridization of
genres characteristic of the third century. But on all of this, more below.
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Introduction 9

circles and tangents, and finally leading on to a sui generis study of arithmo-
geometry – none of these being relevant to any of the others. Yet now –
almost halfway through the treatise – we are given another jolting surprise.
All of a sudden, the text switches to provide us with its proper mathematical
introduction! And we now have the explicit definitions of the spiral itself
and of several of the geometrical objects associated with it. One is indeed
reminded of how we have learned only well into the introduction that this
treatise is going to be about spirals, but the surprise here is much more
marked, as the very convention of a geometrical introduction is subverted,
rather like Pushkin remembering to address his muse only towards the end
of the first canto of his Eugene Onegin. Of course this belated introduction
now serves to mark the text and divide it: what comes before is strictly
speaking introductory, and the geometry of the spiral itself now unfolds in
the following propositions.

And what a mighty piece of work this geometry now is! Having put
behind us the introductory material with its ponderous pace, the treatise
now proceeds much more rapidly, quickly ascending to the results proved
by Archimedes in his introduction. It takes surprisingly little effort, now,
to get to goal (ii), where a certain straight line defined by the spiral is
found to be equal to a circumference of the circle. Quite a result, too: for
after all this is a kind of squaring of the circle. Archimedes obtains this in
proposition 18, in a proof that directly depends upon the subtle problems
5–9 having to do with tangents to circles, and indirectly depends upon the
first two, physical theorems – which therefore now find, retrospectively,
their position in the treatise. And, contrary to the expectation established in
the introduction, he does not see proposition 18 as a conclusion for its line
of inquiry. Proposition 18 determines an equality between a circumference
of a circle and a line produced by a single rotation of the spiral. Proposition
19 then shows that the same line produced by the second rotation of the
spiral is twice a given circumference, and moves on to generalize to the
much more striking (and arithmetized) result, that the rotation of a given
number produces a line which is as many times as the given number the
circumference of the circle, while the following proposition 20 moves on
to show a similar result for a different type of straight line. The single goal
(ii) sprouts into an array of results, heavily arithmetical in character.

At this point a new attack on the spiral develops – the most central one,
giving rise to the measurement of the area of the spiral. But the reader of
Archimedes would be hard pressed to know this.

Archimedes has just proved goal (ii) set, far back, in the introduction,
and then went on to add further consequences, not even hinted at in that
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10 Introduction

introduction. At this point, therefore, the reader is thoroughly disoriented:
the next proofs can be about some further consequences of goal (ii), or
about goal (iii), (i), or anything else. There is no way for us to know that
now begins, in effect, the kernel of the book.

The introduction of a further conceptual tool also serves to mystify. In
proposition 21 Archimedes starts by introducing the notion of bounding
the spiral area between sectors of circles – no suggestion made of how and
where this fits into the program of the treatise. And instead of moving on to
utilize this bounding, Archimedes moves on in proposition 22 to generalize
it to the case where the spiral rotates twice, and then generalize further in
the same proposition to any number of rotations; in proposition 23 he
generalizes it to the case of a partial rotation. Archimedes could easily have
followed the argument for a single rotation, and only then generalize it, in
this way making the conceptual structure of the argument somewhat less
obscure. He has made the deliberate choice not to do so. In fact the reader
by now may well think that Archimedes has plunged into a discussion of
the relationship between spiral areas and sectors of circles – so extended
is the discussion of the bounding of spirals between sectors, and so little
outside motivation is given to it.10

Then we reach proposition 24 and now – only now! – the treatise as a
whole makes sense, in a flash as it were.

The enunciation, all of a sudden, asserts that the spiral area is one-third
the enclosing circle (this is said in economic, crystal-clear terms – the first
simple, non-mystifying enunciation we have had for a long while). No
mention is made in the enunciation of the sectors of circles. The proof
starts by asserting that if the area is not one-third, it is either greater or
smaller. Assume it is smaller, says Archimedes – and then he recalls the
enclosing sectors. And then he notes almost in passing – in fact, he uses
the expression “it is obvious that” – that the figure made of enclosing
sectors instantiates the result of proposition 10, a result which only now is
provided with its meaning in the treatise. It then follows immediately that
the assumption that the spiral area is smaller than one-third the circle ends
up with the enclosing sectors as both greater and smaller than one-third
the circle. The analogous result is then quickly shown for the case that the
10 A mathematically sophisticated reader would no doubt identify the potential of such limiting

sectors for an application of what, in modern literature is called the “method of exhaustion.” But
Archimedes does not assert this at any point, and what is even more important, no hint is provided
as to how such sectors can be measured and so serve in the application of this method. This will
be made clear in retrospect only, as Archimedes would soon reveal the relation of this sequence of
sectors to proposition 10.
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