abstract numerals, 61
abstraction
in λ, 3
in CL, see [], []^\omega, []^2, []^9
in typed CL, 117
(abstraction), rule, 187, 190, 193
abstraction-and-types theorem, 128
Add, 55, 312
admissible
formula, 74
rule, 74
algebraic logic, 274
algebras
λ-, 225
combinatory, see combinatory
algebras
Curry-, 225
lambda abstraction, 274
algorithm for principal types, 141
alternative generalized typing, 186
analogue, typed, 137
anti-symmetric relation, 249
application, 3
in D_\infty, 256, 263
(application), rule, 187, 190, 193
applicative structure, 222
applied
λ-calculus, 3
CL, CL-term, 22
approximate interpretation in D_\infty, 264
arithmetical extension of CL, 61–62, 291
arithmetical basis, 143
typed version, 299–304
association to left in terms, 4
association to right in types, 108
assumptions in deductions, 69
discharged or [], 160
atom
in λ, 3
in CL, 22
atomic constant
in λ, 3
in CL, 22
typed, 109, 115
atomic formula, 72
atomic type, 107
atomic type constant, 183
AUT-QE, typing system, 199
Automath, 148
axiom, 192
(axiom), rule, 187, 190, 193
axiom-schemes in general, 70
axiom-schemes
(α), 70, 112
(β), 70, 112
(γ), 77, 82, 114
(ρ), 70, 71, 112, 116
(I), 71, 116
(K), 71, 116
(S), 71, 116
(→I), 122
(→K), 122
(→S), 122
axioms in general, 69
axioms, 186
for =_C, 95
for CL\omega^+, 73
for extensionality, see E-axs
logical, 72
of a Pure Type System, 201
principal, 125, 145
proper, 72
B, Böhm-tree model, 273
B\mathbb{Z}, 143
338

Index

B, 21
in λ, 34
assigning types, 164, 166
in CL, 24
principal type, 143
types assigned, 123

B′, 21
in λ, 34
in CL, 26, 309
bases, 143
arithmetic, 143
for Church numerals, 144
monoschematic, 145
with universal type ω, 153
basic combinator, 22, see I, K, S
typed, 115
basic generalized typing, 183
Bernays’ R, 52–53
Berry’s extensionality property, 233
binding, 7
Böhm tree, 270
Böhm’s theorem, 37
bottom member, see ⊥
bound variable, 6
change, 9, see ≡
least (l.u.b.), 249
Bruijn, de, notation, 276
C (class of all CL-terms), 92
C, 21
in λ, 34
assigning types, 130
in CL, 25
principal type, 143
calculus of constructions, 201
cancelled, see discharged
cartesian product type, 182
case, for use with injections, 210
category theory & λ-models, 243
change of bound variable, 9
Church numerals, 48, see 0, π
typed versions, 300
Church–Rosser theorem
for ≠ext, 80
for ≠βη, ≤βη, 80
for ≠w, =w, 14, 16, 282–289
for ≠w, =w, 25, 30, 290
for ≈, 90
for reductions with Z, 291
Church-style type-system, 107
for λ, 109
for CL, 115
CL, 22
CLβax, 105
model of, 225

CL⊥ax, 86
model of, 225
CLu
model of, 224
type of =w, 71, 72
type of =w, 71
typed version, 116, 117
CLu+, 73
(CLωR)′, 304
CLuZ, 62
(CLωZ)′, 299, 300
cl, classical axiom for a typing system, 217
classical logic, in a typing system, 217
closed term, 7
CL, 22
CLβax
model of, 225
CLω
model of, 224
type of =w, 71, 72
type of =w, 71
typed version, 116, 117
CLu+, 73
(CLωR)′, 304
CLuZ, 62
(CLωZ)′, 299, 300

conservative extension, 73
consistency condition, 109
consistency of a context, 134
constant
in λ, 3
in CL, 22
typed, 109, 115

© Cambridge University Press
www.cambridge.org
contains, 6
context, 134, 170, 186
legal, 186, 189, 202
continuous function, 252
contraction, 40
\(\alpha\)-, 278
\(\beta\)-, 11
\(\beta\eta\)-, 79
\(\eta\)-, 79
weak, 24
typed, 113, 117
contractum
of \(\beta\)-redex, 11
of \(\eta\)-redex, 79
conversion
\(\alpha\)-, 9, 278, see \(\equiv\)
\(\alpha_0\)-, 278
\(\beta\)-, see \(=\beta\)
closed under conversion, 65
weak equality, see \(=w\)
(conversion), rule, 187, 190, 193
(conversion\(^\prime\)), rule, 218
(conversion\(^\prime\prime\)), rule, 218
convertibility, see conversion
Coq, proof assistant, 201
correct rule, 74
correctness of types lemma, for PTSs, 205
c.p.o. (complete partial order), 250
Curry algebras, 225
Curry–Howard correspondence, 148
Curry-style type-system, 107, 120
currying, 3
cut-off subtraction, 51, 55
\(D/\sim\), 223
\(D_0, D_1, D_2, D_n\), 256
embedding into \(D_\infty\), 261
\(D_A\) model, 271–272
\(D_\infty\) model
definition, 260
reasons for structure, 250, 256
construction, 256–260
history, 220, 247
is a \(\lambda\)-model, 269
properties, 261–270
\(D\) for pairing, 31, 52, 54, 180
built from \(\mathbf{Z}\), 301
in \(\lambda\)-cube, 210
of Church, 309
assigning types, 130
principal type, 143
\(D^\prime\), pairing operator for existential quantifier in typing systems, 212
\(D_1\), first projection, 31, 54, 180, 309
\(D_2\), second projection, 31, 54, 180, 309

data types, inductively defined, 217
de Bruijn notation, 276
decidable set, 64
deduction in a theory, 69
in \(\mathbb{T}_\infty\), 122
in \(\mathbb{T}_\infty^\lambda\), 160
normal, 151
reduction of, 149, 173, 175
deduction reduction, in a PTS, 208
deleting types, 137
denotational semantics, 275
dependent function type, 181
derivable
formula, 74
rule, 74
developments, 292
directed set, 250
discharged assumption, 160
discharging vacuously, 162
disjunction proposition operator, in a typing system, 210
domain of a function, 188
domain of a structure, 222
domain theory, 275

E-axs, 86
ECC, 292
end of a reduction, 40
Entscheidungsproblem, 67
environment \(\lambda\)-models, 231
Eq\(^\prime\) (rule in \(\mathbb{T}_\infty^\lambda\)), 155
postponement, 156
Eq\(^\prime\) (rule in \(\mathbb{T}_\infty\)), 176
postponement, 177
Eq\(_{0\beta}\), Eq\(_{0\beta}\)' (rules in \(\mathbb{T}_\infty^\lambda\)), 176
Eq\(_{0\beta}\)', Eq\(_{0\beta}\)\(_{\text{ext}}\)', Eq\(_{w}\) (rules in \(\mathbb{T}_\infty^\lambda\)), 155
(Eq\(_{0\beta}\)'), rule, 181, 185
equality
\(\beta\)-, see \(=\beta\)
PTS with, 218
weak, see \(=w\)
determined by a theory, 75
closed under, 65
equality propositional operator, 213
equationally equivalent, 271
existential quantifier operator, 212
\(\mathbf{Exp}, 55, 312\)
explicit type-system, see Church-style exponentiation, 55
\((\text{ext})\) rule, 77, 83
extended calculus of constructions, 202
extended polynomials, 115
extensional equality, 78, 83, 95
extensional structures, 223
extensional \(\lambda\)-models, 235
extensional-equivalence class, 237
extensionality axioms, see E-axs
extensionality discussed, 76–92, 95–99, 227
extensionality, Berry’s, 233
extensionality, weak, 232
extensionally equivalent, 223

F, 209
F, set, in a λ-model, 244
factorial function, 56
falsum constant (⊥), 196, 211
filter models, 273
first-order (language, etc.), 72
first-order logic, undecidability, 67
fixed point, 34
fixed-point combinator, 34, 36, see Y
fixed-point theorem, 34
double, 35
second, 68
fnl (functional), 94
Fool’s Model, 271, 274
formal theories in general, 69
formal theories
λβ, 70
λβη, 77, 79
λβζ, 77
CLξ, 82
CLξβ, 106
CLζ, 82
CLζβ, 103
CLw, 71
of strong reduction, 89
formulas of a theory, 69
of TA^ω^, 122
of TA^ω^*, 163
formulas-as-types, see propositions-as-types
free, 7
free variable lemma, for PTSs, 203
fst, left projection for typed pair, 210
fst′, left projection for pairing operator D, 213
Fun(), 222
function
λ-definable, 47, see representable function
computable, 47
partial, 48
partial recursive, 58
representation, 58, 60
primitive recursive, 50
representation, 51, 60
properly partial, 48
recursive, 47, 56
representation, 56, 60
representable, see representable function

G, 182
G(A), 271
G1, approach to defining types, 182
G2, approach to defining types, 182
Gödel number, 63
Gödel’s consistency proof, 299
gd(), 64
(G e), rule, 182
genral recursive function, 56
generalized typing alternative, 186
axioms, 186
generation lemma, for PTSs, 204
Gentzen’s Natural Deduction, 160–161
(G i), rule, 183
graph models, 273

H, 108, 121
Hβ-mapping ()Hβ, 101
Hη-mapping ()Hη, 95
Hw-mapping ()Hw, 101
Hilbert-style theory, 69
hypergraph model, 273

I, 21, 22
in λ, 34
assigning types, 162, 166
in CL, 24
principal type, 142
redundant, 26

Iβ, 93
Iβ (typed term), 110, 115
(I), axiom-scheme, 71, 116
i, in a model, 224
identity function, 229
identity notation, 4
iff (for ‘if and only if’), 4
implicit type-system, see Curry-style
inclusions, proper, 144, 153
induction in a typing system, 216
induction on a term, 6
inductively defined data types, 217
inert, 131, 165
inhabited type, 148
inl, left injection, 210
inr, right injection, 210
instance of a rule, 74
intensional, 76
interior of a model, 227, 242
interpretation in a model, 224
interpreting terms informally, 4
inverse, left, 229
irreducibles, see nf, normal form
for \(\Rightarrow\), 90
isomorphic c.p.o.s, 255
iteration combinator (iterator), see \(Z\)
K, 21, 22
in \(\lambda\), 34
assigning types, 162
in CL, 24
principal type, 142
\(K\alpha\), 93
\(K_{\sigma,\tau}\) (typed term), 110, 115
\((K)\), axiom-scheme, 71, 116
\(k\), in a model, 224
in \(D_\infty\), 267
\(k_n\), 259
l.u.b. (least upper bound), 249
lambda abstraction algebras, 274
least member, see \(\bot\)
left inverse, 229
left, association to, 4
leftmost maximal, 41
leftmost reduction, 41
legal context, 186, 189, 202
legal pseudoterm, 205
length
of a reduction, 40
maximal, 41
of a term, see lgh
LF, typing system, 199
lgh{ }, 199
in \(\lambda\), 5
in CL, 23
LISP, programming language, 44
logical axioms, 72
loose Scott–Meyer \(\lambda\)-model, 240
maximal
length, 41
redex-occurrence, 41
leftmost maximal, 41
minimal
complete development (MCD), 292
term, 31
ML, programming language, 120, 141
model
Böhm-tree model \(B\), 273
\(D_A\), 271–272
\(D_\infty\), see \(D_\infty\)
filter models, 273
graph model, 273
hypergraph model, 273
lambda abstraction algebras, 274
non-well-founded, 274
normal models, 225
of \(\lambda\beta\), see \(\lambda\)-model
of \(\lambda\beta\eta\), 235
of CL\(\beta\alpha\), 225
of CL\(\beta\eta\alpha\), 225
of CL\(\nu\), 224
\(P_\nu\), 272–273
partial models, 274
Skordev’s and Zashev’s, 273
\(T^\omega\), 273
term models, 226, 236, 273
models of typed \(\lambda\), 246
monoschematic bases, 145
monotonic bases, 272–273
\(M\nu\), 55, 312
\(N\), natural number predicate for typing systems, 216
\(N^\circ\), 109
\(N^+\), 251
\(\beta\), Church numerals, 48
assigning types, 124, 165
principal type, 143
typed version, 300
\(\pi\), 48
\(\Pi^{0\circ}\), 109
\(\Pi^+\), 251
continuous functions on, 252
Natural Deduction, 160–161
negation proposition operator, in a typing system, 212
nf
\(\beta\), 12, 15
\(\beta\eta\), 37, 79, 80
strong, 37, 91
typed, 113
undecidability of having, 66
uniqueness, 15, 25
weak, 24
non-binding, 7
non-redex atom or constant, 22, 121
non-well-founded set theory, 46, 274
normal deduction, 151
normal form, see nf
normal models, 225
normal reduction, 41
normal-subjects bases, 131
normalizable term, 293
normalizable, normalization
strong, see SN
weak, see WN
number theory (PA), 299
numerals
abstract, 61
of Church, 48

occurrences, 6
occurs, 6, 23
open type, 120
operators, 45
ordered pair combinator, see D

Pω model, 272–273
PA (Peano Arithmetic), 299
pairing combinator, see D
parallel reduction, 284, 285
parametric types, 120
parentheses, omission from terms, 4
 omission from types, 108
partial function, 48
partial models, 274
partial recursive function, 58
 representation, 58, 60
partially ordered set, 249
complete (c.p.o.), 250
Peano1, axiom for typing system, 215
Peano2, axiom for typing system, 215
 not needed, 216
Peano3, axiom for typing system false in standard typing systems, 215
polymorphic, 46, 119
polynomials, extended, 115
POLYREC, 197
postponement of η, 80
postponement of Eq′, 156, 177
predecessor, see π
predicate, 122, 163
premises of a rule, 69, 74
primitive recursion combinator, see R
primitive recursive function, 50
 representation, 51, 60
principal axioms, 125, 145
principal pair (p.p.), 138, 171
principal type
algorithm for finding, 141, 172
in TAω−, TAω−ω, 157, 177
of a λ-term, 171
of a CL-term, 138
of SKK, 139
of xi, 140
 of various combinators, 142
relative to a basis, 145
principal-types theorem, 141, 172
(product), rule, 190, 193

proj. projection operator for use with existential quantifier in a typing system, 212
projections between c.p.o.s, 255
projections for pairing, see D1, D2
proof in a formal theory, 69
proper axioms, 72
proper inclusions, 144, 153
properly partial function, 48
propositions-as-types, 147, 173–175, 209–217
pseudo-models, 225
pseudocontext, 193, 202
pseudoterms, 192
tp., see principal type
PTS (Pure Type System), 201
 with equality, 218
pure
λ-calculus, λ-term, 3
CL, CL-term, 22, 121
Type System, 201
Q, for equality in a typing system, 213
quasi-leftmost reduction, 42
R, recursion combinator, 51, 214
R built from Z, 62
 assigning types, 144
RBernays, 52–53
 assigning types, 130
RFix, 55
typed version of R, 301, 304
range of a combinator, 68
range of a function, 108
recursion combinator, see R
recursive function, 47
partial, 58, 60
primitive, 50, 51, 60
total, 56, 60
recursive set, 64
recursive types, 197
recursively separable, 64
redex
β-, 11
βη-, 79
η-, 37, 79
typed, 113, 117
weak in CL, 24
Z-, 300
reduces
α0, 278
β-, see β+, β−
βη-, 79
η-, 79
weakly, see ∪w
Index

reduction, 40
leftmost, 41
of a deduction in TA^n→, 149
of a deduction in TA^n→, 173, 175
quasi-leftmost, 42
typed, 113, 117
reflexive relation, 10, 249
relative typability, 145
()rep, 222
Rep(), 242
Reps(), 222
representable function, 49, 222
representative in a structure, 222
restricted weakening lemma, for PTSs, 203
restriction, of a function, 219
retract, retraction, 229
rigid type-system, see Church-style
rule, 69, 74
admissible, 74
conclusion of, 69, 74
correct, 74
derivable, 74
instance of, 74
of a first-order theory, 72
premises of, 69, 74
special, of a generalized typing
system, 192, 201
rule-equivalent, 75
rules
(α-conv), 187, 190, 193
(β), 77, 82
(ζ), 103
(η), 70, 71, 112, 116
(ν), 70, 71, 112, 116
(ξ), 70, 82, 89, 112
(Ξ), 106
(Π e), 181, 185
(Π f), 190
(Π i), 181, 185, 191
(ρ), 71
(σ), 70, 71, 112, 116
(τ), 70, 112, 116
(ω), 77
(ext), 77, 83
(abstraction), 187, 190, 193
(application), 187, 190, 193
(axiom), 187, 190, 193, 201
(conversion), 187, 190, 193
(conversion′), 218
(conversion′′), 218
Eq′, 155, 176
Eq′′, Eq′′′, Eq″, 176
Eq′, Eq′′, Eq′′′, Eq′′′′, 155
(Eq′′′′), 181, 185
(G e), 182
(G j), 183
(product), 190, 193, 201
reducing TA^n→-deductions, 149
reducing TA^n→-deductions, 173
(start), 187, 193
(start1), 190
(start2), 190
(weakening), 187, 193
(weakening1), 190
(weakening2), 190
(≡n), 163, 185
(→ e), 122, 159
(→ f), 188
(→ g), 189
(→ i), 159–161, 188
S, 22
in λ, 34
assigning types, 161
in CL, 24
principal type, 143
Sλ, 93
Sρ,σ,τ (typed term), 110, 115
(S), axiom-scheme, 71, 116
s, in a model, 224
in D∞, 267
sn, 260
satisfies, 224
SC, strongly computable, 293
scope, 6
Scott topology, 253
Scott–Curry theorem, 65
Scott–Meyer λ-model, 240
second order polymorphic λ-calculus, 197
separable, recursively, 64
set theory, non-well-founded, 46, 274
simple types, 107
simultaneous substitution, 10, 23, 309
singly sorted PTS, 206
Skordev’s and Zashev’s models, 273
SN, strong normalization, 113
SN terms, 113, 293
SN theorems
for λ-terms, 297
for bβγ, 294, 304
for bβξ, 114, 294
for bρR, 304
for bρZ, 302
for bω, 118, 136, 297
for reducing deductions, 152, 208
for the λ-cube, 207
snd, right projection for typed pair, 210
sort, 189
sorts, 188, 192
special rules, 192, 201
Index

standardization, 42
(start), rule, 187, 193
start lemma, for PTSs, 203
start of a reduction, 40
(start1), rule, 190
(start2), rule, 190
stratification theorem, 127
(stratified (= typable), 134
strengthening lemma, for PTSs, 206
strict Scott–Meyer λ-model, 240
strong normal form (nf), 37, 91
strong normalization, see SN
strong permutation lemma, for PTSs, 207
strong reduction, see ≥
strongly computable (SC), 293
strongly inert, 131
strongly normalizable, see SN
subject, 122, 163
subject-construction property, 126, 166
subject-expansion fails, 133
subject-reduction theorem, 132, 168

substitution
in λ, 7
in CL, 23
simultaneous, 10, 23, 309
typed, 112, 116
substitution lemmas, 14, 16, 25
for PTSs, 204
subterm, 6, 23
subterm lemma, for PTSs, 205
subtraction, cut-off, 51, 55
successor function, 49
symmetric relation, 10
syntactical λ-models, 231

TAω model, 273
T(), 151
TAω−, type system, 122
TAω−-deduction, see deduction
TAω−-formula, 122
TAω−-proof, 122
TAω−−, 155
TAω−−-3, TAω−−ext, TAω−−w, 155
Eq'-postponement, 156
WN theorem, 157
TAω−, type system, 163
TAω−-deduction, see deduction
TAω−−, 176
TAω−−-3, TAω−−βη, 176
Eq'-postponement, 177
WN theorem, 177
TAGλ, type system, 185
TAGλ, type system, 186

term, 193
λ-, 3
pure, 3
CL-, 22
pure, 22, 121
term models, 226, 236
terminus, 40
theory in a theory, 70
theory-equivalent, 75
theory, formal, 69
first-order, 72
thinning lemma, for PTSs, 204
TM(), see term models
topsort, 207
total function, 48
transitive relation, 10, 249
transitivity lemma, for PTSs, 203
tuncated subtraction, see cut-off
Turing-computable, 47
typable λ-terms, 170
decidability, 172
in TAω−−, 177
normalization, see SN, WN
typable CL-terms, 134–136
decidability, 136
in TAω−−, 157
normalization, see SN, WN
relative, 145
SII untypable, 142
type, 107–108, 120–121, 184, 194
atomic, 107
type-constant, 120
type-variable, 120
cartesian product, 180, 182
closed, 120
dependent function type, 181
dependent-, 107, 120
interpretation, 121
H, 108, 121
inhabited, 148
N, 108, 121
open, 120
as proposition, 147, 173–175, 209–217
pair-type, 180
parametric, 120
principal, see principal type
recursive, 197
simple, 107
universal type ω, 153
type-assignment formula, 122, 159
type-checking, example of, 111
type-context, see context
type-deletion, 137
type functions, 183
type-inference algorithm, 141
type-reconstruction algorithm, 141
type-schemes, 120
Index

type-system
 Curry-style, implicit, 120
 TA_\mathcal{C}_\rightarrow, 122
 TA_{\mathcal{C}_, \rightarrow}, 155
 TA_{\lambda, \rightarrow}, 163
 TA_{\lambda, \rightarrow}^\aleph, 176
 generalizations, 180
 polymorphic, 119
 typed
 \lambda\text{-terms, simply typed}, 109
 \lambda\beta, 112
 \lambda\beta_\eta, 114
 analogue, 137
 atomic constants, 109, 115
 CL-terms, 115
 CLw, 116
 redex, 113, 117
 \eta\text{-redex}, 115
 reduction, 113, 117
 variables, 109, 115
 types as propositions, 147, 173–175, 209–217
 typing, see type-system
 basic generalized, 183
undecidability
 of \equiv_\beta, \equiv_\eta, 67
 of TA_{\mathcal{C}_\rightarrow}, TA_{\lambda, \rightarrow}, 155, 176
 of having a nf, 66
 Scott–Curry theorem, 65
unicity of types lemma, for PTSs, 206
upper bound, 249
u.r.s., uniformly reflexive structure, 274

V, for disjunction, 210
V_\mathcal{W}, V_{\lambda\beta}, V_{\lambda\beta_\eta}, 3, 109
vaucous discharge, 162
valuation, 221
variables
 binding, 7
 bound, 6
 free, 7
 term-, 3, 22
 typed, 109, 115
 void, empty type, 211
 also called \bot, 196, 211

W, 22
 in \lambda, 34
 assigning types, 165
 in CL, 26, 31, 309
 assigning types, 124
 principal type, 143
 WC, weakly computable, 293
 weak contraction, 24
 weak equality, see \equiv_\mathcal{W}
 typed, 117
 weak extensionality, 232
 weak normal form (nf), 24
 typed, 117
 weak normalization, see WN
 weak reduction, 24
 typed, 117
 weak reduction in CL, see \triangledown_\mathcal{W}
 (weakening), rule, 187, 193
 (weakening1), rule, 190
 (weakening2), rule, 190
 weakly inert, 131
 weakly normalizable, see WN
 WN, weak normalization, 113
 WN terms, 113, 293
 WN theorems
 for TA_{\mathcal{C}_\rightarrow}, 157
 for TA_{\lambda, \rightarrow}, 177
 for \lambda\text{-terms}, 174
 for \triangledown_\mathcal{W}, 118, 136
 for \geq, 136
 for reducing deductions, 174
 see also SN theorems

Z-\text{redex}, reduction, 291, 300
Z_(\text{t}) (typed version of Z), 300
Z_n for Church numerals, 48
Zashev’s and Skordev’s models, 273