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One-Dimensional Viscoelasticity

The behavior of many materials under an applied load may be approximated by
specifying a relationship between the applied load or stress and the resultant
deformation or strain. In the case of elastic materials this relationship, identified
as Hooke’s Law, states that the strain is proportional to the applied stress, with
the resultant strain occurring instantaneously. In the case of viscous materials,
the relationship states that the stress is proportional to the strain rate, with the
resultant displacement dependent on the entire past history of loading. Boltzmann
(1874) proposed a general relationship between stress and strain that could be
used to characterize elastic as well as viscous material behavior. He proposed
a general constitutive law that could be used to describe an infinite number of
elastic and linear anelastic material behaviors derivable from various configura-
tions of elastic and viscous elements. His formulation, as later rigorously formu-
lated in terms of an integral equation between stress and strain, characterizes all
linear material behavior. The formulation, termed linear viscoelasticity, is used
herein as a general framework for the derivation of solutions for various wave-
propagation problems valid for elastic as well as for an infinite number of linear
anelastic media.
Consideration of material behavior in one dimension in this chapter, as

might occur when a tensile force is applied at one end of a rod, will provide an
introduction to some of the well-known concepts associated with linear viscoe-
lastic behavior. It will provide a general stress–strain relation from which stored
and dissipated energies associated with harmonic behavior can be inferred as well
as the response of an infinite number of viscoelastic models. It will permit the
derivation of solutions for one-dimensional viscoelastic waves as a basis for
comparison with those for two- and three-dimensional waves to be derived in
subsequent chapters.
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1.1 Constitutive Law

A general linear viscoelastic response in one spatial dimension is defined mathe-
matically as one for which a function r (t) of time exists such that the constitutive
equation relating strain to stress is given by

pðtÞ ¼
ðt

�1
rðt� τÞdeðτÞ; (1:1:1)

where p(t) denotes stress or force per unit area as a function of time, e(t) denotes
strain or displacement per unit displacement as a function of time, and r(t), termed a
relaxation function, is causal and does not depend on the spatial coordinate.
The physical principle of causality imposed on the relaxation function r(t) implies

the function is zero for negative time, hence the constitutive relation may be written
using a Riemann–Stieltjes integral as

pðtÞ ¼
ð1

�1
rðt� τÞdeðτÞ (1:1:2)

or more compactly in terms of a convolution operator as

p ¼ r � de: (1:1:3)

Properties of the convolution operator are summarized in Appendix 1.
A corresponding constitutive equation relating stress to strain is one defined

mathematically for which a causal spatially independent function c(t), termed a
creep function, exists such that the corresponding strain time history may be inferred
from the following convolution integral

eðtÞ ¼
ð1

�1
cðt� τÞdpðτÞ; (1:1:4)

which may be written compactly in terms of the convolution operator as

e ¼ c � dp: (1:1:5)

Linear material behavior is behavior in which a linear superposition of stresses
leads to a corresponding linear superposition of strains and vice versa. Such a
material response is often referred to as one which obeys Boltzmann’s super-
position principle. Boltzmann’s formulation of the constitutive relation between
stress and strain as expressed by the convolution integrals (1.1.2) and (1.1.4)
is general in the sense that all linear behavior may be characterized by such a
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relation. Conversely, if the material response is characterized by one of the
convolution integrals then Boltzmann’s superposition principle is valid. To
show this result explicitly, consider the following arbitrary linear superposition
of strains

eðtÞ ¼
Xn
i¼1

bi eiðtÞ; (1:1:6)

where bi corresponds to an arbitrary but fixed constant independent of time.
Substitution of this expression into (1.1.3) and using the distributive property of
the convolution operator, which immediately follows from the corresponding prop-
erty for the Riemann–Stieltjes integral (see Appendix 1), readily implies the desired
result that the resultant stress is a linear superposition of the stresses corresponding
to the given linear superposition of strains, namely

p ¼
Xn
i¼1

bi pi ¼
Xn
i¼1

biðr � deiÞ ¼ r � d
Xn
i¼1

bi ei

 !
: (1:1:7)

Similarly, (1.1.4) implies that a linear superposition of stresses leads to a linear
superposition of strains.
The term relaxation function used for the function r (t) derives from physical

observations of the stress response of a linear system to a constant applied strain. To
show that this physical definition of a relaxation function is consistent with that
defined mathematically, consider the stress response to a unit strain applied at some
time, say t = 0, to a material characterized by (1.1.3). Specifically, replace e(t) in
(1.1.3) with the Heaviside function

h tð Þ � 0 for t50
1 for t � 0

� �
: (1:1:8)

The fifth property of the Riemann–Stieltjes convolution operator stated in Appendix 1
implies that (1.1.3) simplifies to

p tð Þ ¼ e 0þð Þr tð Þ þ
ðt
0þ

r t� τð Þ @h τð Þ
@τ

dτ; (1:1:9)

hence,

p tð Þ ¼ r tð Þ: (1:1:10)

Similarly, the creep function c(t) defined mathematically may be shown to represent
the strain response of a linear system to a unit stress applied at t= 0.
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To consider harmonic behavior of a linear viscoelastic material, assume sufficient
time has elapsed for the effect of initial conditions to be negligible. Using the
complex representation for harmonic functions let

p tð Þ ¼ Peiωt (1:1:11)

and

e tð Þ ¼ Ee iωt; (1:1:12)

where P and E are complex constants independent of time with the physical stress
and strain functions determined by the real parts of the corresponding complex
numbers. Substitution of (1.1.11) and (1.1.12) into (1.1.2) and (1.1.4), respectively,
shows that the corresponding constitutive relations may be written as

P ¼ iωR ωð ÞE (1:1:13)

and

E ¼ iωC ωð ÞP; (1:1:14)

where R(ω) and C(ω) are given by the Fourier transforms

R ωð Þ ¼
ð1

�1
r τð Þe�iωτ dτ (1:1:15)

and

C ωð Þ ¼
ð1

�1
c τð Þe�iωτ dτ: (1:1:16)

In analogy with the definitions given for elastic media the complex modulus M is
defined as

M ωð Þ � P

E
¼ iωR ωð Þ: (1:1:17)

The complex compliance is defined as

J ωð Þ � E

P
¼ iωC ωð Þ; (1:1:18)

from which it follows that the complex modulus is the reciprocal of the complex
compliance, that is

M ωð Þ ¼ 1

J ωð Þ (1:1:19)
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and the product of the Fourier transforms of the relaxation function and the
creep function is given by the negative reciprocal of the circular frequency squared,
that is

R ωð ÞC ωð Þ ¼ iωð Þ�2: (1:1:20)

A parameter useful for quantifying the anelasticity of a viscoelastic material is
the phase angle δ by which the strain lags the stress. This phase angle is given
from (1.1.17) by

tan δ ¼ MI

MR

; (1:1:21)

where the subscripts “I ” and “R” denote imaginary and real parts of the complex
modulus.

1.2 Stored and Dissipated Energy

Energy in a linear viscoelastic system under a cycle of forced harmonic oscillation is
partially dissipated and partially alternately twice stored and returned. To account
for the energy in a linear viscoelastic system under a harmonic stress excitation as
characterized by a general constitutive relation of the form (1.1.13), consider the
complex strain given by

e ¼ Jp: (1:2:1)

The time rate of change of energy in the system is given by the product of the
physical stress and the physical strain rate, namely,

pR _eR; (1:2:2)

where the dot on _eR denotes the derivative with respect to time and the subscript R
denotes the real part of the strain rate. Solving (1.2.1) for p, then taking real parts of
the resulting equation implies that the physical stress can be expressed as

pR ¼ JR eR þ JI eI

Jj j2 : (1:2:3)

For harmonic excitation

eI ¼ � _eR
ω
: (1:2:4)

Substitution of (1.2.3) and (1.2.4) into (1.2.2) shows that the desired expression for
the time rate of change of energy in the one-dimensional system is given by
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pR _eR ¼ @

@t

1

2

JR

Jj j2 e
2
R

 !
� 1

ω
JI

Jj j2 _e
2
R

 !
: (1:2:5)

Integrating (1.2.5) over one cycle shows that the total rate of change of energy over
one cycle equals the integral of the second term on the right-hand side of the
equation. Hence, the second term of (1.2.5) represents the rate at which energy is
dissipated and the first term represents the time rate of change of the potential energy
in the system, that is, the rate at which energy is alternately stored and returned. The
second law of thermodynamics requires that the total amount of energy dissipated
increase with time, hence the second term in (1.2.5) implies that

JI � 0: (1:2:6)

A dimensionless parameter, which is useful for describing the amount of energy
dissipated, is the fractional energy loss per cycle of forced oscillation or the ratio of
the energy dissipated to the peak energy stored during the cycle. Integrating (1.2.5)
over one cycle shows that the energy dissipated per cycle as denoted by ΔE /cycle is
given by

ΔE
cycle

¼ �π Pj j2JI: (1:2:7)

The first term on the right-hand side of (1.2.5) shows that the peak energy stored
during a cycle or the maximum potential energy during a cycle as denoted bymax[P ]
is given by

max P½ � ¼ 1

2
Pj j2JR; (1:2:8)

where JR ≥ 0. Hence, the fractional energy loss for a general linear system may be
expressed in terms of the ratio of the imaginary and real parts of the complex
compliance or the complex modulus. as

ΔE
cycle

.
max P½ � ¼ 2π

�JI
JR

¼ 2π
MI

MR

: (1:2:9)

Normalization of the fractional energy loss by 2π yields another parameter often
used to characterize anelastic behavior, namely the reciprocal of the quality factor,
which may be formally defined as

Q�1 � 1

2π
ΔE cycle=

max P½ � : (1:2:10)

Q− 1 for a one-dimensional linear system under forced oscillation is, from (1.2.9),
given by
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Q�1 ¼ �JI
JR

¼ MI

MR

: (1:2:11)

Examination of (1.1.21) shows thatQ−1 also represents the tangent of the angle by
which the strain lags the stress, that is

Q�1 ¼ tan δ: (1:2:12)

Another parameter often used to characterize anelastic response is damping
ratio ζ, which may be specified in terms of Q−1 as

ζ ¼ Q�1

2
: (1:2:13)

For the special case of an elastic system JI =MI = 0, hence Q
−1 = tan δ= ζ= 0.

1.3 Physical Models

The characterization of one-dimensional linear material behavior as defined math-
ematically and presented in the previous sections is general. The considerations
apply to any linear behavior for which a relaxation function exists such that the
material behavior may be characterized by a convolution integral of the form
(1.1.1). Alternatively, the considerations apply to any linear material behavior for
which a complex modulus exists such that (1.1.17) is a valid for characterization of
harmonic behavior. Specification of the complex modulus for a particular physical
model of viscoelastic behavior allows each model to be treated as a special case of
the general linear formulation.
The basic physical elements used to represent viscoelastic behavior are an elastic

spring and a viscous dashpot. Schematics illustrating springs and dashpots in
various series and parallel configurations are shown in Figures (1.3.3)a through
(1.3.3)h. In order to derive the viscoelastic response of each configuration one end is
assumed anchored with a force applied as a function of time at the other end. Forces
are assumed to be applied to a unit cross-sectional area with the resultant elongation
represented per unit length, so that force and extensionmay be used interchangeably
with stress and strain.
The elongation of an elastic spring element is assumed to be instantaneous and

proportional to the applied load. Upon elimination of the load the spring is assumed
to return to its initial state. The constitutive equation for an elastic spring as first
proposed by Hooke in 1660 is specified by

p ¼ μe; (1:3:1)

1.3 Physical models 7
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where μ is a constant independent of time. The assumption that the response of an
elastic spring is instantaneous implies that for an initial load applied at time t=0 the
strain at time t=0 is e(0) = p(0)/μ. Hence, the creep and relaxation functions for the
special case of an elastic model are h(t)/μ and μh(t). For harmonic behavior substitu-
tion of (1.1.11) and (1.1.12) into (1.3.1) implies the complex compliance andmodulus
as specified by (1.1.18) and (1.1.17) are given by 1/μ and μ, where the imaginary parts
of each are zero. Hence, Q−1 as specified by (1.2.11) for an elastic model is zero.
The rate at which a viscous dashpot element is assumed to elongate is assumed to be

proportional to the applied force, with the resultant elongation dependent on the entire
past history of loading. The constitutive equation for a viscous element is given by

p ¼ η _e; (1:3:2)

(a) Elastic
µ

µ

µ

µ 2

µ2

µ1

µn

η

η

η

η1

η1

η1

η2

ηn

η2 ηn

µ1

µ1

µ2

µn

η2

(b) Viscous

(c) Maxwell

(d) Voight

(e) Standard
      Linear

(f) Standard
      Linear

(g) Generalized
      Voight

(h) Generalized
      Maxwell

µ1′

µ2′
µ2′′

Figure (1.3.3). Schematics showing elastic spring and viscous dashpot elements in
series and parallel configurations for various models of linear viscoelasticity.
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where _e denotes the derivative of strain with respect to time or the velocity of the
elongation with respect to unit length. The viscous element is assumed not to
respond instantaneously, hence its elongation due to an instantaneous load applied
at time t = 0 is e (0) = 0. Integration of (1.3.2) implies the creep and relaxation
functions for the special case of a viscous element are given by

c tð Þ ¼ t h tð Þ=η (1:3:4)

and
r tð Þ ¼ η δ tð Þ; (1:3:5)

where δ(t) denotes the Dirac-delta function, whose integral is unity and whose
non-zero values are zero. Substitution of (1.1.11) and (1.1.12) into (1.3.2) implies
the complex compliance and modulus for a viscous element are J ωð Þ ¼ 1=ðiωηÞ
and M(ω) = iωη. Equation (1.2.11) implies Q−1 is infinite, because no energy is
alternately stored and returned in a viscous element.
An infinite number of viscoelastic models may be derived from various serial

and parallel configurations of elastic springs and viscous dashpots. Schematics
for common models are shown in Figure (1.3.3). Three fundamental viscoelastic
models are the Maxwell model, which assumes the basic elements are in series, the
Voight model, which assumes the basic elements are in parallel, and a Standard
Linear model, which assumes a spring in series with a Voight element or a spring in
parallel with aMaxwell element. Generalizations of thesemodels are the Generalized
Voight model and the Generalized Maxwell model. The Generalized Voight model
includes aMaxwell model in series with a sequence of Voight elements in series. The
Generalized Maxwell model includes a Voight element in parallel with a sequence
of Maxwell elements in parallel. A Standard Linear model may be considered as a
special case of a Generalized Voight model with n= 2 and η1

−1 = 0.
The two configurations shown for a Standard Linear model (Figures (1.3.3)e and f)

are equivalent in that the parameters of the elements may be adjusted to give the
same response. Similarly, the configuration of springs and dashpots for any model
involving more than two of these elements is not unique, in that other configurations
of springs and dashpots in series and parallel will yield the same response.
For the Maxwell model the strain resulting from an applied load is the sum of the

strains associated with the individual elements in series. Hence, the resultant strain
rate is given by

_e ¼ _e1 þ _e2 ¼ _p

μ
þ p

η
; (1:3:6)

where the initial strain, as implied by the assumed instantaneous response of the
spring, is eð0Þ ¼ pð0Þ=μ. Integration of (1.3.6) and substitution of a unit stress
implies that the creep function for a Maxwell model is

1.3 Physical models 9
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c tð Þ ¼ 1

μ
þ 1

η
t

� �
h tð Þ: (1:3:7)

Similarly, integration and substitution of a unit strain implies the relaxation function
for a Maxwell model is

rðtÞ ¼ μ exp½�ðμ=ηÞt� h tð Þ: (1:3:8)

Substitution of (1.1.11) and (1.1.12) into (1.3.6) together with (1.1.17) and (1.1.18)
implies the complex compliance and complex modulus for a Maxwell model
are given by JðωÞ ¼ 1=μ� i=ðωηÞ and MðωÞ ¼ ð1=μ� i=ðωηÞÞ�1, from which
(1.2.11) implies Q�1 ¼ μ=ðωηÞ.
For a Voight model the applied stress is the sum of the stress associated with each

of the elements in parallel. Hence the applied stress is given by

p ¼ μeþ η _e; (1:3:9)

where the initial strain is e(0) = 0. The creep and relaxation functions inferred from
(1.3.9) for the Voight model are

c tð Þ ¼ 1

μ
1� exp½�ðμ=ηÞt�ð Þh tð Þ (1:3:10)

and

r tð Þ ¼ ηδ tð Þ þ μh tð Þ: (1:3:11)

Substitution of (1.1.11) and (1.1.12) into (1.3.9) implies the complex compliance
and modulus for a Voight model are JðωÞ ¼ 1=ðμþ iωηÞ and M(ω) = μ+ iωη.
Hence, (1.2.11) implies Q�1 ¼ ωη=μ.
For a Standard Linear model with an applied load, the resultant strain is the sum

of the strains associated with the spring in series with the Voight element, while the
applied stress is the same for the spring and Voight elements in series. The resulting
equations for configuration “e” shown in Figure (1.3.3) are

p ¼ μ1e1 þ η1 _e1 ¼ μ2e2 (1:3:12)

and

e ¼ e1 þ e2; (1:3:13)

which upon simplification may be written as

pþ τp _p ¼ Mr eþ τe _eð Þ; (1:3:14)

where τp is the stress relaxation time under constant strain defined by

τp � η1
μ1 þ μ2

; (1:3:15)
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