Face Geometry and Appearance Modeling

Human faces are familiar to our visual systems. We easily recognize a person’s face in arbitrary lighting conditions and in a variety of poses, detect small appearance changes, and notice subtle expression details. Can computer vision systems process face images as well as human vision systems can?

Face image processing has potential applications in surveillance, image and video search, social networking, and other domains. A comprehensive guide to this fascinating topic, this book provides a systematic description of modeling face geometry and appearance from images, including information on mathematical tools, physical concepts, image processing and computer vision techniques, and concrete prototype systems.

This book will be an excellent reference for researchers and graduate students in computer vision, computer graphics, and multimedia as well as application developers who would like to gain a better understanding of the state of the art.

Dr. Zicheng Liu is a Senior Researcher at Microsoft Research, Redmond. He has worked on a variety of topics including combinatorial optimization, linked figure animation, and microphone array signal processing. His current research interests include activity recognition, face modeling and animation, and multimedia collaboration. He has published more than 70 papers in peer-reviewed international journals and conferences and holds more than 40 granted patents.

Dr. Zhengyou Zhang is a Principal Researcher with Microsoft Research, Redmond, and manages the multimodal collaboration research team. He has published more than 200 papers in refereed international journals and conferences and coauthored 3-D Dynamic Scene Analysis: A Stereo Based Approach (1992); Epipolar Geometry in Stereo, Motion and Object Recognition (1996); Computer Vision (1998); and Face Detection and Adaptation (2010). He is an IEEE Fellow.
Contents

1 **Introduction**
1.1 Literature review 2
1.2 Scope of the book 11
1.3 Notation 13

PART I FACE REPRESENTATIONS

2 **Shape models** 19
2.1 Mesh 19
2.2 Parametric surfaces 20
2.3 Linear space representation 21
2.4 Expression space representation 25

3 **Appearance models** 31
3.1 Illumination models 31
3.2 Irradiance environment map 36
3.3 Spherical harmonics 36
3.4 Morphable model of face albedo 39

PART II FACE MODELING

4 **Shape modeling with active sensors** 43
4.1 Laser scanners 43
4.2 Structured light systems 46
4.3 Structured light stereo systems 47

5 **Shape modeling from images** 48
5.1 Structure from motion approach 48
5.2 Stereovision approach 77
Contents

5.3 Two orthogonal views 80
5.4 A single view 82

6 Appearance modeling 86
6.1 Reflectometry 86
6.2 Reconstruction of irradiance environment maps 91
6.3 Illumination recovery from specular reflection 101

7 Joint shape and appearance modeling 111
7.1 Shape from shading 111
7.2 Face morphable model 113
7.3 Spherical harmonic basis morphable model 118
7.4 Data-driven bilinear illumination model 128
7.5 Spatially varying texture morphable model 129
7.6 Comparison between SHBMM- and MRF-based methods 140

PART III APPLICATIONS

8 Face animation 149
8.1 Talking head 149
8.2 Facial expression synthesis 150
8.3 Physically based facial expression synthesis 153
8.4 Morph-based facial expression synthesis 153
8.5 Expression mapping 154
8.6 Expression synthesis through feature motion propagation 166

9 Appearance editing 181
9.1 Detail transfer 181
9.2 Physiologically based approach 191
9.3 Virtual lighting 194
9.4 Active lighting 202

10 Model-based tracking and gaze correction 217
10.1 Head pose estimation 218
10.2 Monocular head pose tracking 235
10.3 Stereo head pose tracking 236
10.4 Multicamera head pose tracking 242
10.5 Eye-gaze correction for videoconferencing 251

11 Human computer interaction 257
11.1 Conversational agent 257
11.2 Face-based human interactive proof system 268

Bibliography 279
Index 295
Color plates follow page 146