Event Representation in Language and Cognition examines new research into how the mind deals with the experience of events. Empirical research into the cognitive processes involved when people view events and talk about them is still a young field. The chapters by leading experts draw on data from the description of events in spoken and signed languages, first and second language acquisition, co-speech gesture and eye movements during language production, and from non-linguistic categorization and other tasks. The book highlights newly found evidence for how perception, thought, and language constrain each other in the experience of events. It will be of particular interest to linguists, psychologists, and philosophers, as well as to anyone interested in the representation and processing of events.

JÜRGEN BOHNEMEYER is Associate Professor of Linguistics at the University at Buffalo, The State University of New York. He is the author of The Grammar of Time Reference in Yukatek Maya (2002).

ERIC PEDERSON is Associate Professor of Linguistics at the University of Oregon. He is the co-editor (with Jan Nuyts) of Language and Conceptualization (Cambridge, 1997) and Perspectives on Language and Conceptualization (1993).
This series looks at the role of language in human cognition – language in both its universal, psychological aspects and its variable, cultural aspects. Studies focus on the relation between semantic and conceptual categories and processes, especially as these are illuminated by cross-linguistic and cross-cultural studies, the study of language acquisition and conceptual development, and the study of the relation of speech production and comprehension to other kinds of behaviour in a cultural context. Books come principally, though not exclusively, from research associated with the Max Planck Institute for Psycholinguistics in Nijmegen, and in particular the Language and Cognition Group.

1 Jan Nuyts and Eric Pederson (eds.) Language and Conceptualization
2 David McNeill (ed.) Language and Gesture
3 Melissa Bowerman and Stephen C. Levinson (eds.) Language Acquisition and Conceptual Development
4 Gunter Senft (ed.) Systems of Nominal Classification
5 Stephen C. Levinson Space in Language and Cognition
6 Stephen C. Levinson and David Wilkins (eds.) Grammars of Space
7 N. J. Enfield and Tanya Stivers (eds.) Person Reference in Interaction: Linguistic, cultural and social perspectives
8 N. J. Enfield The Anatomy of Meaning: Speech, gesture, and composite utterances
9 Giovanni Bennardo Language, Space, and Social Relationships: A foundational cultural model in Polynesia
10 Paul Kockelman Language, Culture, and Mind: Natural constructions and social kinds
11 Jürgen Bohnemeyer and Eric Pederson (eds.) Event Representation in Language and Cognition
Event Representation in Language and Cognition

Edited by

Jürgen Bohnemeyer

University at Buffalo, The State University of New York

and

Eric Pederson

University of Oregon
Contents

Figures ... vii
Contributors .. x
Acknowledgments ... xii

1 On representing events – an introduction
ERIC PEDERSON AND JÜRGEN BOHNEMEYER 1

2 Event representation in serial verb constructions
ANDREW PAWLEY .. 13

3 The macro-event property: The segmentation of causal chains
JÜRGEN BOHNEMEYER, N. J. ENFIELD, JAMES ESSEGBEY,
AND SOTARO KITA .. 43

4 Event representation, time event relations, and clause structure: A crosslinguistic study of English and German
MARY CARROLL AND CHRISTIANE VON STUTTERHEIM 68

5 Event representations in signed languages
ASLI ÖZYÜREK AND PAMELA PERNISS 84

6 Linguistic and non-linguistic categorization of complex motion events
JEFF LOUCKS AND ERIC PEDERSON 108

7 Putting things in places: Developmental consequences of linguistic typology
DAN I. SLOBIN, MELISSA BOWERMAN, PENELlope BROWN,
SONJA EISENBEIß, AND BHUVANA NARASIMHAN 134

8 Language-specific encoding of placement events in gestures
MARIANNE GULLBERG .. 166
Contents

9 Visual encoding of coherent and non-coherent scenes 189
CHRISTIAN DOBEL, REINHILD GLANEMANN,
HELENE KREYSA, PIENIE ZWITSERLOOD, AND
SONJA EISENBEIß

10 Talking about events 216
BARBARA TVERSKY, JEFFREY M. ZACKS, JULIE BAUER
MORRISON, AND BRIDGETTE MARTIN HARD

11 Absent causes, present effects: How omissions cause events 228
PHILLIP WOLFF, MATTHEW HAUSKNECHT, AND
KEVIN HOLMES

References 253
Index 278
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Event segmentation – an introductory example</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>ECOM E7</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Early and late frame of ECR 18</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Early and late frame of ECR 5</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>Early and late frame of ECR 23</td>
<td>64</td>
</tr>
<tr>
<td>5.1</td>
<td>Different construction types of spatial and activity predicates observed in our data</td>
<td>93</td>
</tr>
<tr>
<td>5.2</td>
<td>The percentages of different event predicate types in the two sign languages</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>The percentages of perspective types across the two sign languages</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>The distribution of combinations of different event space projections (character, observer) with different types of classifier predicates (aligned, non-aligned) in the two sign languages</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Schemas for different possible uses of predicate types and perspectives deployed in event space representations in signed narratives</td>
<td>106</td>
</tr>
<tr>
<td>6.1</td>
<td>Average proportion manner choices by language group in Experiment 1</td>
<td>120</td>
</tr>
<tr>
<td>6.2</td>
<td>Average proportion manner choices by language group in Experiment 2</td>
<td>123</td>
</tr>
<tr>
<td>6.3</td>
<td>Average proportion of manner and path false alarms by language group</td>
<td>124</td>
</tr>
<tr>
<td>7.1</td>
<td>English placement schema (satellite-framed)</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>Spanish placement schema (verb-framed)</td>
<td>136</td>
</tr>
<tr>
<td>7.3</td>
<td>German placement schema (satellite-framed)</td>
<td>137</td>
</tr>
<tr>
<td>7.4</td>
<td>Russian placement schema (satellite-framed)</td>
<td>137</td>
</tr>
<tr>
<td>7.5</td>
<td>Finnish placement schema (satellite-framed)</td>
<td>137</td>
</tr>
<tr>
<td>7.6</td>
<td>Hindi placement schema (verb-framed)</td>
<td>138</td>
</tr>
<tr>
<td>7.7</td>
<td>Turkish placement schema (verb-framed)</td>
<td>138</td>
</tr>
<tr>
<td>7.8</td>
<td>Tzeltal placement schema (verb-framed)</td>
<td>139</td>
</tr>
</tbody>
</table>
Figure 7.9 Scale of languages according to relative frequency of verbs at t1 147
7.10a Spanish preposition 150
7.10b Turkish case-marking 150
7.10c Hindi case-marking 151
7.10d Finnish case-marking 151
7.11a English placement category 153
7.11b German placement categories 153
7.11c Tzeltal placement categories 154
7.12 English and German: Verb-of-placement constructions in caregiver speech 162
7.13 Verb-of-placement constructions in English and German child speech 163
7.14a English verb-of-placement constructions: Naomi and her parents 163
7.14b German verb-of-placement constructions: Simone and her parents 164

Figure 8.1 The task set-up with the Describer on the left and the Drawer on the right 175
8.2 Stimulus: placement of the bowl 178
8.3 Placement of bowl in Dutch with a posture placement verb, zetten, and a bi-manual gesture encoding object information in the hand shape 179
8.4 Placement of bowl in French with a general placement verb, mettre, and a gesture encoding simple-path, no object information 180
8.5 Placement in Dutch with a general placement verb, doen, ‘do, make,’ and a gesture encoding object information in the hand shape (right hand, grip around bananas) 182
8.6 Placement in Dutch with another specific placement verb, duwen, ‘push,’ and a gesture encoding object information in the hand shape (grip around chewing gum) 182
8.7 Placement in French with a specific placement verb, coller, ‘stick’, and a gesture encoding simple-path, with a flat hand, no object information 183

Figure 9.1 Examples of the naturalistic stimuli used in Experiments 2a, 2b and 3b, displaying events with one participant, two participants and three participants 201
9.2 Experiment 2a. Mean proportion of gaze time spent in different ROIs, depending on task (percent of time between picture onset and speech onset) 203
9.3 Experiments 3a and 4. Examples for coherent and non-coherent scenes (taken from Dobel et al. 2007) 206
Figures

9.4 Examples for stimuli of actions involving two participants, used in Experiments 3c, 3d and 3f 209

11.1 Scene adapted from Freyd, Pantzer, and Cheng (1988) in which participants were asked to indicate whether the plant was located in the “same” position once a source of support was removed 236

11.2 Configurations of forces associated with CAUSE, HELP/ENABLE/ALLOW, and PREVENT; \(A = \) the affector force, \(P = \) the patient force, \(R = \) the resultant force; \(E = \) endstate vector, which is a position vector, not a force 241

11.3 On the left side, two CAUSE relations are combined using the resultant force from the first cause relation (BA) as the affector force in the second cause relation (BBA). On the right side, a PREVENT relation is combined with another PREVENT relation using the resultant of the PREVENT relation in the second premises as the patient vector in the PREVENT relation in the first premise 243

11.4 The affector force in the conclusion, A, is the affector force in the first relation, A. The endstate in the conclusion is the endstate vector from the last premise. The patient force in the conclusion, C, is based on the vector addition of the patient forces, B and C in the premises 243

11.5 The composition of two PREVENT relations can either lead to a CAUSE or ALLOW conclusion 245

11.6 The configuration of forces in the top panel, which depicts a PREVENT ◦ PREVENT composition, was entered into a physics simulator to produce the movements of the cars in the animation depicted in the still frames in the bottom panel. First, car C attempts to cross the line but is prevented by car B, which approaches car C. Then, car A pulls car B away from car C with a rope, preventing car B from preventing car C. Finally, with car B out of the way, car C crosses the line 247
Contributors

JULIE BAUER MORRISON Glendale Community College
JÜRGEN BOHNEMEYER University at Buffalo, The State University of New York
MELISSA BOWMAN Max Planck Institute for Psycholinguistics
PENELOPE BROWN Max Planck Institute for Psycholinguistics
MARY CARROLL Ruprecht-Karls-Universität Heidelberg
CHRISTIAN DOBEL Westfälische Wilhelmsuniversität Münster
SONJA EISENBEIß University of Essex
N. J. ENFIELD Max Planck Institute for Psycholinguistics
JAMES ESSEGBEY University of Florida at Gainesville
REINHILD GLANEMANN Westfälische Wilhelmsuniversität Münster
MARIANNE GULLBERG Centre for Languages and Literature, Lund University
MATTHEW HAUSKNECHT University of Texas at Austin
KEVIN HOLMES Emory University
SOTARO KITA University of Birmingham
HELENE KREYSA Bielefeld University
JEFF LOUCKS Institute for Learning and Brain Sciences, University of Washington
BRIDGETTE MARTIN HARD Stanford University
BHUVANA NARASIMHAN University of Colorado at Boulder
ASLI ÖZYÜREK Radboud University Nijmegen and Max Planck Institute for Psycholinguistics
Contributors

ANDREW PAWLEY Australian National University
ERIC PEDERSON University of Oregon
PAMELA PERNISS Radboud University, Nijmegen, Max Planck Institute for Psycholinguistics, and DCAL, University College London
DAN I. SLOBIN University of California, Berkeley
BARBARA TVERSKY Stanford University and Columbia Teachers College
CHRISTIANE VON STUTTERHEIM Ruprecht-Karls-Universität Heidelberg
PHILLIP WOLFF Emory University
JEFFREY M. ZACKS Washington University
PIENIE ZWITSERLOOD Westfälische Wilhelmsuniversität Münster
Acknowledgments

The origins of this volume lie in the Event Representation project at the Max Planck Institute for Psycholinguistics. From 2000 to 2004, this project brought together researchers studying lesser documented languages in the field and scholars studying child language development to explore universals and variation in how events are described across languages. Several of the contributing authors were members or external collaborators of this project (Bohnemeyer and Bowerman jointly directed the project and Brown, Eisenbeiß, Enfield, Essegbey, Kita, Narasimhan, Pederson, and Slobin participated) or members of institute research projects on co-speech gesture, language production, multilingualism, and sign language who collaborated with Event Representation (Dobel, Gullberg, Özyürek, Perniss). The Max Planck Institute for Psycholinguistics is unique in the breadth of the different approaches to the interface between language and cognition its researchers are able to provide. The multifaceted perspective that is the result of this breadth is well reflected in the present collection. Moreover, the research presented in five of the ten chapters of the body of the book was wholly or in part funded by the Max Planck Society (Bohnemeyer et al., Dobel et al., Gullberg, Özyürek, and Perniss, Slobin et al.).

The Event Representation project was highlighted by two workshops dedicated to the topic of event encoding in language and mind. These workshops brought together participants of the project and some of the premier scholars of event representations in linguistics, psychology, and philosophy from outside the project. The first of these was organized by Bohnemeyer at the Max Planck Institute in Nijmegen in 1999; the second in 2004 was organized by Pederson and Russell S. Tomlin, of the University of Oregon, as well as by Bohnemeyer. This second symposium was sponsored by the University of Oregon Foundation, the University of Oregon College of Arts and Sciences, and the Department of Linguistics.

As for the current volume, the chapters by Bohnemeyer et al., Dobel et al., Loucks and Pederson, and Pawley all evolved out of presentations at the Eugene symposium. Carroll and von Stutterheim and Wolff likewise presented from their ongoing research on event representation in language and
cognition in Eugene. Zacks and Tversky’s joint research was presented on both occasions (by Tversky in Nijmegen and by Zacks in Eugene). It was during the Eugene symposium that the idea for this volume was conceived. It was clear from the beginning that the goal would be a record, not so much of the proceedings of the symposium, but rather of the state of the art in research on the relation between linguistic and cognitive event representations. Consistent with this, however much the current volume may trace a history back to this symposium, the chapters reflect a broad body of scholarship far beyond the original conference.

We would like to thank the contributors, the editors in charge of the project at Cambridge University Press, Helen Barton and Joanna Garbutt, and the series editor Steve Levinson. We should particularly thank Levinson, who in his capacity as Director of the Language and Cognition research group at the Max Planck Institute for Psycholinguistics instigated the Event Representation project, made it possible, and served as a source of ideas and advice throughout its development. We would also like to thank the two anonymous reviewers of the book proposal for their valuable suggestions for improvement, Carolyn O’Meara for compiling the bibliography, Randi Tucker for assistance during the proofreading process, and Linda Konnerth and Holly Lakey for producing the index, and Jill Lake for meticulous and impeccable copy-editing. In the end, this volume has been the product of the efforts of many individuals contributing in many different ways.