Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index More information

Index of notation

Sets and sequences

We denote by $\mathcal{P}(A)$ the set of subsets of a set *A* (its powerset), and by $\mathcal{P}_f(A)$ its set of finite subsets. The difference of two sets *A* and *B* is the set $A - B := \{a \in A \mid a \notin B\}$. The empty set is \emptyset .

We denote by Seq(A) the set of finite sequences of elements of a set A, and by s[i] the *i*-th element of $s \in Seq(A)$. The empty sequence is (). If A is an alphabet, we denote Seq(A) also by A^* . Its elements are then called words, which are sequences of letters (or symbols). The empty word is also denoted by ε .

We denote by |A| the cardinality of a set A, and also by |s| the length of a sequence s (in particular, of a word). The cardinality of a set A is also denoted by Card(A) in certain cases, for better readability of formulas. We denote by $|s|_a$ the number of occurrences of $a \in A$ in a sequence $s \in Seq(A)$.

Integers

We denote by \mathcal{Z} the set of integers, by \mathcal{N} the set of nonnegative ones and by \mathcal{N}_+ the set of positive ones. For $n, m \in \mathcal{Z}$, we let $[n,m] := \{i \in \mathcal{Z} \mid n \le i \le m\}$ and [m] := [1,m]. We have $[m] = \emptyset$ if $m \le 0$ and $[n,m] = \emptyset$ if m < n.

If $p, q \in \mathcal{N}, q \ge 2$, we let $\operatorname{mod}_q(p)$ be the unique integer r in [0, q - 1] such that $p \equiv r \pmod{q}$. If $n \in \mathcal{N}$, then $\exp(n)$ denotes 2^n . All logarithms are in base 2. The function $\exp: \mathcal{N}^2 \to \mathcal{N}$ is defined by $\exp(0, n) = n$ and $\exp(d + 1, n) = 2^{\exp(d, n)}$; thus, $\exp(1, n) = \exp(n)$.

Binary relations and functions

If $R \subseteq A \times A$ is a binary relation on a set A, then R^* denotes its reflexive and transitive closure, R^+ its transitive closure and R^{-1} its inverse $\{(x,y) \mid (y,x) \in R\}$. The identity relation $\{(x,x) \mid x \in A\}$ is denoted by Id_A , or just by Id when A is clear from the context.

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index More information

712

Index of notation

If $R \subseteq A \times B$ and $S \subseteq B \times C$ are two binary relations, then $R \cdot S$ denotes their composition, i.e., the relation $\{(x,z) \in A \times C \mid (x,y) \in R \text{ and } (y,z) \in S \text{ for some} y \in B\}$. If R and S are functional, i.e., if they define partial functions $f : A \to B$ and $g : B \to C$ respectively, then $R \cdot S$ defines the partial function $g \circ f : A \to C$; in that case we denote $R \cdot S$ also by $S \circ R$. We denote by $\bigcap_{i \in I} f_i$ the composition in any order of functions f_i that commute pairwise (i.e., such that $f_i \circ f_i = f_i \circ f_i$ for all $i, j \in I$).

The domain of a binary relation $R \subseteq A \times B$ is denoted by $Dom(R) \subseteq A$, and its image is $R(A) \subseteq B$. Thus, $Dom(R) = \{a \in A \mid (a,b) \in R \text{ for some } b \in B\} = R^{-1}(B)$. For a subset *C* of *A*, $R(C) = \{b \in B \mid (a,b) \in R \text{ for some } a \in C\}$.

The restriction of a mapping $f : A \to B$ to a subset *C* of *A* is denoted by $f \upharpoonright C$. Two mappings $f : A \to B$ and $g : A' \to B'$ agree if f(a) = g(a) for every $a \in A \cap A'$, i.e., if $f \upharpoonright (A \cap A') = g \upharpoonright (A \cap A')$. We denote by $f \cup g$ their common extension into a mapping $: A \cup A' \to B \cup B'$.

We denote by $[A \to A]_f$ the set of mappings : $A \to A$ that are the identity outside of a finite subset of A and by $Perm_f(A)$ the subset of those that are permutations, i.e., bijections : $A \to A$.

Other symbols

Notation that is self-explanatory (e.g., Loops(G) for the set of loops of a graph G), or that is used in a single section, is not listed. The order below is conceptual: concepts that are close mathematically are put together as closely as possible. General concepts are given before the more technical ones. Symbols are followed by short explanations and the page numbers where they are defined.

Terms and rooted trees (Sections 2.1 and 2.6.1, Definitions 2.13 and 2.14)

	1	~
F, F_i, F_+	functional signature	81, 177
F^{-}	functional signature	202
$\rho(f), \rho(F)$	arity	81, 177
$H \subseteq F$	subsignature	81, 177
T(F), T(F,X)	sets of terms	82, 84, 178
T(F) = AC(H)	terms (AC signature)	412
Slim(F)	slim terms	143
Pos(t), Occ(t, f)	positions, occurrences	83
ht(t)	height of term t	83
$ListVar(t), \tilde{t}$	variables in <i>t</i>	85
$t[t_1/v_1,,t_n/v_n], c[t]$	substitutions	84
$ heta_H$	second-order substitution	179
Ctxt(F), Ctxt(F,X)	contexts over F	84
$t \uparrow u$	context above <i>u</i>	84
t/u	subterm below <i>u</i>	84

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

	Index of notation	713	
$N_T, root_T$	nodes, root of tree T	91	
	son, ancestor in T	92	
	subtree below <i>u</i>	91	
,	syntactic tree of <i>t</i>	92, 94	
Syn(t)/u	\simeq syntactic tree of t/u	93	
$Syn(t) \uparrow u$	\simeq syntactic tree of $t \uparrow u$	93	
$N_t/u, N_t \uparrow u$	nodes of $Syn(t)/u$, $Syn(t) \uparrow u$	94	
yd(t)	yield of t	587	
Alg	gebras (Sections 2.1 and 2.6.1)		
\mathbb{M}	F-algebra	81, 176	
M	its domain	81, 177	
$f_{\mathbb{M}}$	operation defined by f	81, 176	
$\mathbb{T}(F), \mathbb{T}_{AC}(F,H)$	algebras of terms	82, 178, 412	
$\mathbb{W}(A), \mathbb{W}_{left}(A), \mathbb{W}_{right}(A)$	-	85	
F_A, U_A	their signatures	85	
$val_{\mathbb{M}}(t)$	value of term <i>t</i>	82, 178	
$t_{\mathbb{M}}$	derived operation	82, 84, 178, 179	
S	set of sorts	176	
M_s	domain of sort s	176	
$M_{(s_1,,s_n)}$	product of domains	176	
$T(F)_s, T(F,X)_s$	terms of sort <i>s</i>	178	
$\alpha(f), \sigma(f)$	input, output type of f	176	
$\sigma(m)$	sort of <i>m</i>	177	
$s_1 \times \cdots \times s_n \to s$	type of an operation	176	
$\mathbb{M}\subseteq\mathbb{N}$	subalgebra	81, 177	
$\mathbb{M} \times \mathbb{N} \sim$	Cartesian product	82, 177	
$(A , enc_A, \xi_A), \widetilde{f}$	encodings	85, 86	
$\zeta_{\mathbb{M}}$	operations of \mathbb{M}	86	
$\mathbb{M} \upharpoonright F, \mathbb{M} \upharpoonright S$	restriction	177	
\mathbb{M}_{H}	derived algebra	179	
\mathbb{M}/\sim	quotient algebra	233	
N ^k	free commutative monoid	205, 255	
Graphs (Section 2.2)			
V_G, E_G	vertices, edges of graph G	87	
vert _G	incidence mapping	87	
edg_G	adjacency relation	88	
$u \rightarrow_G v, uG v$	directed, undirected edge	87	
Isol _G	isolated vertices	107	
$Adj^{-}(x)$	adjacent vertices	133, 657	

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index More information

714	Index of notation	
Ø	empty graph	89
$\ G\ $	size of G	89
Deg(G)	(maximal) degree of G	53
(K, Λ)	vertex and edge labels	90
$G \simeq H$	isomorphism of graphs	89
$[G]_{iso}$	isomorphism class of G	89
Inc(G)	incidence graph	69, 126
und(G), core(G)	undirected graphs from G	88
$und(G)^k$	distance k graph	551
Line(G)	line graph of G	71
$G \cup H, G \cap H$	union, intersection	99
$G \oplus H$	disjoint union	99
$G \otimes H$	complete join	18
$H \subseteq G, H \subseteq_i G$	subgraph, induced subgraph	91
G[X], G-X, G-u	subgraphs	91
G[F], G-F, G-e	subgraphs	91
G/\approx	quotient graph	94, 95
$G/F, \trianglelefteq, \trianglelefteq_c$	edge contraction, minor	95
Forb(A), Obst(A)	forbidden/excluded minors	98
$\omega(G)$	clique number	133
$K_n, K_{n,m}, C_n$	standard graphs	41, 125
$G_{n \times m}, G_{n \times m}^{\mathrm{u}}, P_n$	grids, paths	125, 159
wd	width	108, 122, 136
twd, pwd	tree-width, path-width	122, 126
$TWD(\leq k, C), TWD(\leq k)$	tree-width $\leq k$	122
$PWD(\leq k, C), PWD(\leq k)$	path-width $\leq k$	126
$G[u \leftarrow H], G[e \leftarrow H]$	graph substitution	161, 278
$B(G), B_{\Lambda}(G)$	encodings of graph G	437, 438
\mathcal{G}^{u}	simple undirected graphs	18
${\mathcal G}$	simple directed graphs	46
$\mathcal{J}_2^{\mathrm{d}}$	directed graphs with two sources	20

Graph algebras: graphs with sources (Section 2.3)

JS, JS^u, JS^d, JS^t	HR algebras of s-graphs	104, 105, 181
$\mathcal{JS},\mathcal{JS}^{\mathrm{u}},\mathcal{JS}^{\mathrm{d}},\mathcal{JS}_{C}$	their domains	100, 104, 105, 181
$F^{\mathrm{HR}}, F^{\mathrm{HRu}}, F^{\mathrm{HRd}}, F^{\mathrm{tHR}}$	their operations	104, 105, 181
F_C^{HR}	subsignature for $C \subseteq \mathcal{A}$	105
$\mathbb{JS}[C], \mathbb{JS}^{\text{gen}}[C]$	subalgebras	105, 110, 181
$P_C^{\mathrm{HR}}, F_C'^{\mathrm{HRd}}$ $\mathbb{J}_2^{\mathrm{d}}, \mathcal{J}_2^{\mathrm{d}}$	derived signatures	143, 479
$\mathbb{J}_2^{\mathrm{d}}, \mathcal{J}_2^{\mathrm{d}}$	a derived subalgebra	20, 46, 184
$\mathbb{JN}^{\mathrm{t}},\mathcal{JN}$	a derived subalgebra	288

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

Index of notation 715		
\mathcal{A}	source names/labels	100
$\tau(G)$	type of s-graph G	100
$\tau(t), \widehat{\tau}(t), \mu(t), wd(t)$	related notions	108
G°	s-graph without sources	100
src_G , $slab_G$, $Src(G)$	source designations	100
Int_G	internal vertices of G	100
$\beta(G), Int(G)$	border, interior of G	298
G/\approx	quotient s-graph	102
$/\!\!/, \Box_k$	parallel-composition	101, 102, 288
// C,D	typed parallel-composition	181
fg_B, fg_b	source forgetting	102, 103
$fg_{B,C}$	typed source forgetting	181
miv _a	making internal vertex	479
$ren_h, ren_{a \rightarrow b}, ren_{a \leftrightarrow b}$	source renaming	103
ren _{h,C}	typed source renaming	181
$ \begin{array}{l} \mathbf{a}, \mathbf{a}^{\ell}, \mathbf{a}\mathbf{b}, \overrightarrow{\mathbf{a}\mathbf{b}}, \varnothing \\ \mathbf{a}^{\ell}_{\lambda}, \mathbf{a}\mathbf{b}_{\lambda}, \overrightarrow{\mathbf{a}\mathbf{b}_{\lambda}}, \mathbf{a}_{\kappa} \end{array} $	constant symbols	103, 104
$\mathbf{a}_{\lambda}^{\ell}, \mathbf{a}\mathbf{b}_{\lambda}, \overline{\mathbf{a}\mathbf{b}_{\lambda}}, \mathbf{a}_{\kappa}$	symbols for labeled graphs	105
•	series-composition	20, 183
val(t)	abstract value of term t	104, 110
cval(t), gval(t)	concrete value of <i>t</i>	112, 114
Exp(t)	expansion of <i>t</i>	111
Typ, Unt	typing, untyping	181, 182, 272

Graph algebras: graphs with ports (Section 2.5)

$\mathbb{GP}, \mathbb{GP}^{\mathrm{u}}, \mathbb{GP}^{\mathrm{t}}$	VR algebras of p-graphs	146, 185
$\mathcal{GP}, \mathcal{GP}^{\mathrm{u}}, \mathcal{GP}_{C}$	their domains	145, 184
$F^{\mathrm{VR}}, F^{\mathrm{VRu}}, F^{\mathrm{tVR}}$	their operations	146, 185
$F_C^{\rm VR}$	subsignature for $C \subseteq \mathcal{A}$	146
$\mathbb{GP}[C], \mathbb{GP}^{\text{gen}}[C]$	subalgebras	146, 185
F^{cVR}	concrete version of F^{VR}	150
$F'^{\mathrm{VR}}, F^{\mathrm{iVR}}, F^{\kappa \mathrm{VR}}$	variants of F^{VR}	170-172
$\mathbb{G}^{\mathrm{u}},\mathcal{G}^{\mathrm{u}}$	a derived subalgebra	18, 46
\mathcal{A}	port labels	144
$\pi(G)$	type of p-graph G	144
G°	p-graph without ports	144
$port_G$	port mapping	144
\oplus	disjoint union	99, 145
$\oplus_{C,D}$	typed disjoint union	185
$ \begin{array}{l} \bigoplus_{add} C,D \\ \overrightarrow{add}_{a,b}, add_{a,b} \\ \overrightarrow{add}_{a,b,C}, add_{a,b,C} \end{array} $	edge addition	145
$\overrightarrow{add}_{a,b,C}, add_{a,b,C}$	typed edge addition	185

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

716

Index of notation

$relab_h, relab_{a \to b}, relab_{D \to a}$	port relabeling	145, 161
$relab_{h,C}$	typed port relabeling	185
$\mathbf{a}, \mathbf{a}^{\ell}, \mathbf{a}(x), \mathbf{a}^{\ell}(x), \varnothing$	constant symbols	146, 150
$\overrightarrow{add}_{a,b,\lambda}, \mathbf{a}_M$	for labeled graphs	149
ADD_R	derived edge addition operation	155
$\otimes, \overrightarrow{\otimes}, \otimes_{R,h}$	complete join	18, 147, 161, 172
val(t), cval(t)	abstract, concrete value of t	146, 150, 151
cval(t)/u	\simeq concrete value of t/u	151
$Occ_0(t), port_t$	notions for $cval(t)$	150, 151
cwd, lcwd	clique-width, linear cwd	148
$CWD(\leq k, C), CWD(\leq k)$	clique-width $\leq k$	295

Equational and recognizable sets; automata (Chapters 3, 4 and 6)

-	a server et ala ala a	
$\mathcal{P}(\mathbb{M})$	powerset algebra	189
\cup_s	union of sets of sort <i>s</i>	189
Ω_s	empty set of sort <i>s</i>	189
F_{\cup}	signature of $\mathcal{P}(\mathbb{M})$	189
Pol(F,X)	polynomial terms	190
Mon(t)	monomials of <i>t</i>	190
\mathcal{P}_h	set extension of homomorphism h	191
Unk(S)	unknowns of system S	191
Sort(S), F(S)	sorts, operations in S	192
$S_{\mathcal{P}(\mathbb{M})}$	function associated with S	193
$\mu \overline{x} \cdot S_{\mathcal{P}(\mathbb{M})}(\overline{x})$	least solution of S in $\mathcal{P}(\mathbb{M})$	194
$\mu \overline{x} \cdot S_{\mathcal{P}(\mathbb{M})}(\overline{x}) \upharpoonright y$	its component defined by y	194
$Equat(\mathbb{M})$	equational sets of \mathbb{M}	194
$Rat(\mathbb{M})$	rational sets of \mathbb{M}	221
$\Rightarrow_G, \Rightarrow_S$	one-step derivation relations	197, 207
L(G,x), L(G,Y)	context-free languages	197
$G[S], G(S), G(\mathscr{A})$	context-free grammars	197, 200, 223
$S \nearrow S'$	unfolding	208
Trim(S), Trim(S,Z)	trim systems obtained from S	212
$\langle F, Q_{\mathscr{A}}, \delta_{\mathscr{A}}, Acc_{\mathscr{A}} \rangle$	F -automaton \mathscr{A}	222
$f[q_1,\ldots,q_k] \to \mathscr{A} q$	transition	222
δ_f	transition function	582
$\sharp \mathscr{A}, \ \mathscr{A} \ $	size measures	222
$L(\mathscr{A},q), L(\mathscr{A})$	languages recognized by A	223
$S(\mathscr{A})$	equation system of \mathscr{A}	223
$run_{\mathscr{A},t}$	run of deterministic complete \mathscr{A}	224
td - $run_{\mathcal{A},t}$	top-down run of \mathscr{A}	582
$Q_{\mathscr{A},s}$	states of sort <i>s</i>	225

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

	Index of notation	71′
$det(\mathscr{A})$	determinization of A	225
$\operatorname{Rec}(\mathbb{M})$	recognizable sets of $\mathbb M$	228
$\mathscr{A}(\mathbb{B},C)$	automaton from algebra	230
$\sim, (\sim_s)_{s \in \mathcal{S}}$	congruence	233
$\gamma \sim$	its index	233
\mathbb{M}/\sim	quotient algebra	233
\approx^L	syntactic congruence of L	234, 287, 305
γ_L	recognizability index of L	234, 287, 305
$\mathcal{M}(L)$	minimal automaton of L	237, 238
$(\widehat{p})_{p\in P}$	family of predicates	245
$sat(\mathbb{M},p)$	satisfaction set	246
L(S,x)	s-graphs or p-graphs defined by (S, x)	262, 293
$L_{Term}(S, x)$	terms defined by (S,x)	262, 293
$\mathcal{A}(S)$	source or port labels in S	262, 293
$\mathscr{A} \times \mathscr{B}$	product of automata	440
$\mathscr{A} \cup \mathscr{B}, \mathscr{A} \cap \mathscr{B}$	union, intersection of automata	440
$\overline{\mathcal{A}}$	complement automaton	440
$h(\mathcal{A}), h^{-1}(\mathcal{A})$	images of automaton \mathscr{A}	441

Relational structures (Chapters 5, 7 and 9)

	· •	
$\mathcal{R}, \mathcal{R}_i, etc.$	relational signatures	
$\rho(R), \rho(\mathcal{R})$	arity	316
$\langle D_S, (R_S)_{R \in \mathcal{R}_+}, (c_S)_{c \in \mathcal{R}_0} \rangle$	\mathcal{R} -structure S	316
$\emptyset, \emptyset_{\mathcal{R}}$	empty structures	316
S, S, K $S[X], S/\approx$	1.	316, 394
,	substructure, quotient structure	316, 510
$S \simeq T$	isomorphism of structures	316
$[S]_{iso}$	isomorphism class of S	316
$STR^{c}(\mathcal{R}), STR(\mathcal{R})$	concrete, abstract \mathcal{R} -structures	
\mathcal{W}_A , suc, lab_a	representation of words w	316
\mathcal{R}_F , son _i , lab _f , rt,	representation of terms t	317
$\mathcal{R}^{sort, br_i}_{s, C}, \mathcal{R}^{sort, br_i}_{s, C},$	signatures for $(p-, s-)$ graphs G	320
	signatures for (p-, s-) graphs o	318, 319,
$\mathcal{R}_{\mathbf{s},[K,\Lambda]}, \mathcal{R}_{\mathbf{m}}^{\mathbf{u}}, etc.$		345, 346
$edg, edg_{\lambda}, lab_a, in,$	relations for (p-, s-) graphs	318, 319,
in_1, in_2, lab_{Edge}		
$\lfloor w \rfloor, \lfloor t \rfloor, \lfloor G \rfloor_C, \lfloor G \rfloor,$	structures representing w, t, G	345, 346
$\lceil G \rceil_C, \lceil G \rceil$		317–320,
$\lfloor t \rfloor / u, \lfloor t \rfloor \uparrow u$	representation of subterm,	345, 346
	context	321
$\lfloor L \rfloor, \lceil L \rceil, \lfloor L \rfloor_C, \lceil L \rceil_C$	structures for a set L	210 221
		318–321,
		347

7

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

718	Index of notation	
·	size functions	322, 494, 649
$\mathcal{R}_*, Lab_{\mathcal{R}}, S_*, STR^{c}_*(\mathcal{R}_*)$	constants as unary relations	328, 511
$\oplus, \oplus_{\mathcal{R}, \mathcal{R}'}$	disjoint union of structures	359, 376
+	union of structures	651
$/\!\!/\mathcal{R},\mathcal{R}'$	parallel composition of structures	385
$fuse_{a,b}, ffuse_{a,b}, qf$,	unary operations on structures	376, 377, 394,
add, mdf		643
STR, STR _{pres} , STR _{sep} ,	algebras of relational structures	394
STR _{nc}		
$F^{\text{QF}}, F^{\text{QF}}_{\text{pres}}, F^{\text{QF}}_{\text{sep}}, F^{\text{QF}}_{\text{nc}}$	their functional signatures	394
$F^{\operatorname{QF}} \upharpoonright \mathcal{R}$	subsignature	638
$F_C^{\text{relVR}}, F_{\mathcal{R},\mathcal{B}}^{\text{redQF}}$	related functional signatures	643, 647
$Inc(S), \mathcal{R}^{Inc}, In_{\mathcal{R}}, T_{S}$	incidence graph of S	629, 630
twd(S), pwd(S)	tree-width, path-width of S	632
$TWD(\mathcal{R}, \leq k),$	\mathcal{R} -structures of <i>twd</i> , <i>pwd</i> $\leq k$	632
$PWD(\mathcal{R}, \leq k)$		
Adj(S)	adjacency graph of S	633
$twd^{Inc}(S)$	tree-width of $Inc(S)$	633
$cval(t), Occ_0(t)$	concrete structure defined by t	395, 638

Logic (Chapters 5 and 6)

Standard logical notation is not reviewed.

$ \varphi , qh(\varphi)$	size, quantifier-height of formula φ	324
$mfv(\varphi)$	maximal free variable of φ	445
$bqh(\varphi)$	block quantifier-height of φ	447
$ba(\varphi)$	Boolean arity of φ	447
$\varphi[\cdots]$	substitutions in φ	332, 333
$\varphi \upharpoonright X$	relativization	334
TC[R;x,y],	transitive closure	334, 335
$TC[(\lambda u, v \cdot \varphi); x, y]$		
$QF(\mathcal{R},\mathcal{X})$	quantifier-free formulas over \mathcal{R}, \mathcal{X}	372
$FO(\mathcal{R}, \mathcal{X})$	first-order formulas	322, 323
$MS(\mathcal{R}, \mathcal{X})$	monadic second-order formulas	326
$\mathrm{SO}(\mathcal{R},\mathcal{X})$	second-order formulas	324
FO_i , MS_i , SO_i , $i = 1, 2$	formulas expressing graph properties	347
<i>x</i> :v, <i>x</i> :e, <i>X</i> :v, <i>X</i> :e	typed variables	349
Sgl	singleton set predicate	445
$Card_{p,q}$	cardinality set predicates	352, 353
$CMS(\mathcal{R},\mathcal{X}), CMS_1,$	counting MS logic	352, 353
CMS_2		

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

Index of notation		
CMS ^{Bool}	CMS logic with Boolean set terms	459
$MOD(\varphi)$	models of φ	323
$Th_{\mathcal{L}}(\mathcal{C})$	\mathcal{L} -theory of \mathcal{C}	329
$Sat_{\mathcal{L}}(\mathcal{C})$	formulas of $\mathcal L$ satisfiable in $\mathcal C$	329
$MC(\mathcal{C}, \mathcal{L})$	model-checking problem	429
$sat(S, \varphi, \overline{X}, \overline{x})$	satisfying assignments	324
$\sharp sat(S, \varphi, \dots)$	counting function	432
$Maxsat(S, \varphi, \ldots)$	optimizing function	432
$sat(S \oplus T, \varphi, \overline{X}, \overline{x}; \overline{y}),$	notions for the Splitting	361, 365,
$perm_{\pi}, \boxtimes$	Theorem	366
$\langle \delta, (\theta_R)_{R \in \mathcal{R}'_+}, (\kappa_{c,d}) \rangle$	QF operation definition scheme \mathcal{D}	373
$\widehat{\mathcal{D}}$	QF operation defined by \mathcal{D}	373
${}^{l}\mathcal{R}_{,\mathcal{R}'}$	natural inclusion	375
$arphi^{\mathcal{D}}$	backwards translation	380
$Th(S,\mathcal{R},.)$	bounded theory	388
$Th(t, \downarrow u, .), Th(t, \uparrow u, .)$	bounded theories for term t	390, 392
$Th_t^{\downarrow}(.), Th_t^{\uparrow}(.), Th_t(.)$	special cases	583
Th_{rt}^{\uparrow}	root theory	583
$\widetilde{\mathrm{C}_r\mathrm{MS}^h}(\mathcal{R},\mathcal{X})$	normalized formulas	420
$F^{(n)}, t * \gamma$	representation of assignments	450
$L_{\varphi}, L_{C, \varphi}^{\mathrm{VR}}, L_{C, \varphi}^{\mathrm{HR}}$	sets of terms for models of φ	450, 460, 484
$\mathcal{A}_{\varphi}, \mathcal{B}_{C,\varphi}, \mathcal{C}_{C,\varphi}$	automata recognizing these sets	450, 461, 484
MINOR _H	sentence expressing minor inclusion	44

Monadic second-order transductions (Chapters 7 and 9)

$ \begin{aligned} [\tau]_{iso} \\ \tau \cdot \tau', \tau \circ \tau' \end{aligned} $	transduction of abstract structures composition	506 506
τ^{-1} , $Dom(\tau)$	inverse, domain	506
$\langle \chi, (\delta_i)_{i \in [k]}, (\theta_w)_{w \in \mathcal{R}' \circledast [k]} \rangle$	definition scheme	507
$\langle \chi, \delta, (\theta_R)_{R \in \mathcal{R}'} \rangle$	noncopying definition scheme	508
$qh(\mathcal{D})$ $\widehat{\mathcal{D}}$	quantifier-height of $\mathcal D$	507
$\widehat{\mathcal{D}}$	transduction defined by \mathcal{D}	507
$\mathcal{D}_*, au_*, au_{**}$	notions for constants	513
$\eta^{[k]}, \mu_{\mathbf{i}}, \beta_{\mathbf{i}}^{\mathcal{D}}, \beta^{\mathcal{D}}, \tau^{\#}(\beta)$	backwards translation	516-518
$fg_{\mathcal{U}}, exp_{\mathcal{U}}, copy_k$	particular transductions	525, 529
$\mu_{F,n}, \pi_{F,n}$	relabelings	526
	comparison of classes	531
TREES	the set of trees	548

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

720	Index of notation	
PATHS	the set of paths	552
$\overrightarrow{\#}$ sat, $\overrightarrow{\#} \gamma$	cardinality mappings	554
$MS_{i,j}, CMS_{i,j}$	transductions of incidence graphs	555
	Tree transducers (Chapter 8)	
μ_A	coding of words by unary terms	581
DMSOW	parameterless MS-transductions of words	581
DMSOT	parameterless MS-transductions of terms	581
DMSOTW	idem from terms to words	581
$G_{M,s}$	regular grammar of transducer M on input term s	586, 599
\mathscr{A}_M	infinite automaton of transducer M	605
$ au_M$	transduction computed by transducer M	586, 599, 605
DTWT ^{MS} _{su}	single-use deterministic MS tree-walking transductions	586
DTWTW ^{MS}	deterministic MS tree-walking tree-to-word transductions	587
DTWT	deterministic tree-walking transductions	587
$\mathrm{DTWT}_{\downarrow}$	deterministic top-down tree transductions	602
DTWTW	deterministic tree-walking tree-to-word transductions	587
2DGSM	deterministic two-way finite-state transductions	587
P-DTWT	deterministic tree-walking pushdown transductions	599
P-DTWTW	idem tree-to-word	599
DMBOT _{su}	single-use multi bottom-up tree-to-word transductions	606
1DMWT _{su}	single-use one-way multi word transductions	606
DMT	deterministic macro tree transductions	612
REGT	regular term languages	615
REGW	regular word languages	616

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index More information

Index¹

affine mapping, c3.26 algebra, s2.1 AC, d5.85 derived, d2.125 locally finite, s3.4.1 many-sorted, s2.6.1 of graphs HR, s2.3.1, s2.6.2 VR, s2.5.1, s2.6.3 of relational structures, s5.3.7 of words, d2.7 power-set, s3.1.1, d3.1 product, d2.1, d2.123 quotient, d3.63 assignment, s5.1.3, s8.6 automaton, s3.3.1 complement, s6.3.1 finite, d3.46 image, inverse image, s6.3.1 intersection, s6.3.1 minimal, d3.72 product, s6.3.1 semi-, d3.46 size of, d3.46 tree-walking, s8.2 trim, d3.48 union, s6.3.1

Backwards Translation Theorem for CMS-transductions, t7.10 for QF operations, t5.47 bandwidth, e4.3(10)cyclic, e4.3(11) betweenness, s1.9.2, s9.1.1 Boolean arity, d6.19 normalization, d5.90 set term. d6.32 substitution, d6.32, l6.33 border, d4.50 bottom-up computation, d2.14 box, d2.53 cardinality (set) predicate, s5.2.6 clique-width, see width CMS, d5.24 coloring, d2.11 proper vertex k-coloring, e1.11 complete join, s1.1.2, e2.88(3), e5.54 directed, e2.108, e4.43(2)

directed, e2.108, e4.43(2) composition of CMS-transductions, d7.1, t7.14, *ℓ*9.60

¹ This index refers to sections, definitions, theorems etc. by using the following abbreviations: a = application, c = corollary, d = definition, e = example, ℓ = lemma, p = proposition, r = remark, s = section and t = theorem.

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

722

composition (cont.) of QF operations, p5.49 congruence, s3.4.3 effectively given, d3.77 index of, d3.63 locally finite, d3.63, d4.29 sort-preserving, d3.63 syntactic, d3.65 type-preserving, d4.29 witnessing, p3.64 connectivity condition, d2.53 constant, d2.1, d2.123, d5.1, s5.1.5 defining sentence, d5.42 -separated, d5.1 context, d2.6, s2.3.3, s.2.5.3 context-free, s3.1.3 strict, p3.15 core, d2.9, p2.47 counting MS logic, see CMS counting problem/function, d6.5, s6.4.3 cross-section, d2.15 canonical, s2.3.2 cyclic ordering, s1.9.2, s9.1.2 decomposition modular, s2.5.4 of CMS-transductions, p7.24, p7.26 of QF operations, *l*5.78 path-decomposition, s2.4.1, s9.2 tree-decomposition, s2.4.1, s9.2 binary, d2.68 downwards increasing, d2.66 normal, e2.56(6) representation of, e5.2(4)definability (logical), s5.1.5 of regular languages, s5.2.4 definition scheme of CMS-transduction, d7.2, d7.6 QFO, DP-QFO, QDP-QFO, d5.42 derived algebra, d2.125

Index

operation, d2.5, d2.125 extended, d2.125 linear, strict, s3.2.3, d2.125 signature, d2.125 disjoint union of graphs, d2.23 of p-graphs, s2.5.1, s2.6.3 of structures, d5.34, e5.44, d5.62 ordered, e5.56 domain -extending, d7.2 formula d5.42 of an algebra, d2.1, d2.123 of a relational structure, d5.1 of a transduction, d7.1 (-)preserving (DP), d5.42, d7.2 restricting, d5.77 edge addition, s2.5.1, s2.6.3 -complement, e1.30, p2.105(4) contraction, d2.15 opposite, d2.9 (set) quantification, s5.2.5, s7.3, s9.4.1 subdivision, e7.44 effectively given, d2.8, d2.127, d3.77 semi-effectively given, d2.8, d2.127 elimination order, s2.4.4 encoding, d2.8, d6.7 enumeration, s6.4.4(1) equation system, d3.6 HR, s4.1.1 typed, s4.1.3, d4.12 linear, t7.41 polynomial, d3.6 subsystem, *l*3.27 trim, s3.2.2 uniform, quasi-uniform d3.6, p3.33 VR, s4.3.1 typed, s4.3.3

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

equational set, s3.1, d3.8 of terms, s3.1.4 of words, s3.1.3 of commutative words, s3.1.6 linear, t7.41 HR-, s4.1 VR-, s4.3 of terms, s8.9, t8.27 of words, s8.9, t8.28 Equationality Theorem for structures, t9.31 for the HR algebra, s7.4, t7.51 for the VR algebra, s7.2, t7.36, t7.41 equivalence of automata, d3.46 of equation systems, s3.1.2, d3.28 of formulas, s5.2, s5.6 of representations, s5.1.5, d7.9 of sets of structures, s7.1.7 of terms, d2.32, s2.3.3, s2.5.3 evaluation of a CMS-transduction, t7.29, r7.31(2), t8.14, t8.18, r8.19(3) of a term, d2.2, s2.3.2, s2.5.2, p7.30, p7.48, s9.3.2 expansion of a structure, d7.19 of a term, s2.3.2, d3.3 expressibility (logical), s5.1.5 monadic second-order, s5.2 Filtering Theorem algebraic version, s3.4.7, t3.88 concrete version, t1.8 logical version, c5.70, c5.71 finiteness problem, s4.1.4, s4.3.3 first-order logic, see FO fixed-parameter tractable problem, s6.1 fixed-point, d3.6, t3.7, t3.13 induction, s1.2.1, s1.2.2, p3.91, c5.70(3), c5.71(3) FO, s5.1.2

Index

forest, d2.13 in a hypergraph, d9.48 normal, d9.45, d9.48 spanning, d9.45, d9.48 formula (logical), see logic block quantifier-height of, d6.19 Boolean arity of, d6.19 domain, d5.42, d7.2 normalization of, s5.6, d5.90, d5.92, s6.3.2 n-normal, d6.20 quantifier-height of, s5.1.3 relation, d5.42, d7.2 size of, s5.1.3 generated by a grammar, d3.11, d4.1, d4.22 by a signature, d2.2, d2.124 finitely, d2.124 graph, s2.2 abstract, s2.2, s2.3.1, s2.5.1 adjacency, p9.14 basic, s2.3.1, s2.5.1 chordal, s2.4.4, e5.18, e6.43, p7.39 cograph, s1.1.2 k-colorable, e1.11 concrete, s2.2, s2.3.1, s2.5.1 incidence, d5.17, d9.10, d9.48 labeled, d2.11, d2.90 module, d2.111 outerplanar, e4.3(7) p-, s2.5.1 perfect, e6.43(3)prime, d2.111 quotient, d2.15, d2.28 representation of, e5.2(2), d5.17 s-, s2.3.1 series-parallel, s1.1.3, e4.3(1) simple, d2.9, d2.11 split, p7.39

subgraph, d2.12

723

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

724

grammar, cf. equation system attribute, s8.7 context-free, d3.11 strict, p3.15 HR, s4.1.5, d4.22 graph, s1.10, s2.7, s4.1.5, s4.6 regular, d3.17 uniform, quasi-uniform, d3.17 grid, e2.56(3), p2.106, p4.36, t5.6, s5.2.3, p7.40, p7.60 height of a forest, d2.13 of a term, d2.3 homogenous, d2.123, d4.12 homomorphism of algebras, d2.1, d2.123, d3.5 of graphs, p9.40 tree, see second-order substitution witnessing, d3.55 hyperedge, d4.20, d9.48 replacement, s4.1.5 hypergraph, d4.20, d9.48 orientation of, d9.53 semi-orientation of, d9.57 simple, d9.48 splitting of, d9.51 image, d7.1 finite images, s8.1.1 inductive predicates, s3.4.5 properties, s1.2.3 interior, d4.50 internal vertex, d2.24 intersection of automata, s6.3.1 of graphs, d2.22 inverse, d7.1 invertible, d7.2 isolated vertex, d2.9 isomorphism

Index

of algebras, d2.1, d2.123 of graphs, d2.10 of p-graphs, d2.86 of relational structures, d5.1 of s-graphs, d2.24 of transductions, d7.1 join, see complete join jumping, s8.2 labeling scheme, s6.4.4(3)language, d2.2 linear size increase, d7.2, t8.17 listing problem, s6.4.2 local tree-walking transducer, s8.2, s8.5 locally finite algebra, s3.4.1 congruence, d3.63 predicates, d3.81 logic CMS, d5.24 FO, s5.1.2 MS, s5.1.4 MS₂, s5.2.5 QF, s5.3.2 SO, s5.1.3 minor, c1.14, d2.15 excluded/forbidden, d2.20, p2.21 model, s5.1.2 model-checking, s5.1.6, s6.1, s9.3.1 monadic second-order logic, see MS relabeling, d7.20 transduction, d7.2, d7.6, s7.1.3, s7.3 of terms, t8.10 of words, t8.17 monomial, d3.3 MS, s5.1.4 μ -calculus, s3.2.5

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

natural inclusion, e5.44 nonjumping tree-walking transducer, s8.2 normalization of formulas, see formula occurrence, d2.3 operation derived, d2.5, d2.125 linear, strict, s3.2.3, d2.125 DP-QF, QDP-QF, d5.42, d5.52 of an algebra, s2.1, s2.6.1 on p-graphs, s2.5.1, s2.6.3 disjoint union edge addition port relabeling on s-graphs, s2.3.1, s2.6.2 parallel-composition source forgetting source renaming QF, s5.3.2, d5.42 optimizing problem/function, d6.5, s6.4.3 orderability (logical), d5.28, e7.3(3), d9.41 orientability (logical), d9.41, d9.53 orientation of a graph, d2.9 of a hypergraph, d9.53, d9.57 simplicial, d2.71 parallel-composition, s2.3.1, s2.6.2, e5.55 parsing algebra elements, d3.43 graphs, s2.3.2, s2.5.2, d4.4, s6.2 terms, d2.14 path-width, see width p-graph, s2.5.1 polynomial, d3.3 system, d3.6 port, s2.5.1 relabeling, s2.5.1, s2.6.3

Index

position, d2.3

725

precondition, d7.2 property-checking, d6.5, s6.4.1 pumping, s3.3.2 OF. s5.3.2 quantification edge (set), s5.2.5, s7.3, s9.4.1 quantifier-free logic, see QF operation, d5.42 quantifier-height of a formula, s5.1.3 block, d6.19 of a definition scheme, d7.2 quasidomain preserving (QDP), d5.42 uniform, d3.6, d3.17 quotient algebra, d3.63 graph, d2.15 s-graph, d2.28 structure, e7.3(1) rank-width, see width rational set, s3.2.5 transduction, e8.3 recognition by reduction, s6.4.4(2)recognizability index, d3.65, d4.33, d4.52, s5.6.3 logical characterization of, s5.5, s7.6 Recognizability Theorem for graphs, t5.68 for structures, s5.3.8, s5.3.10 for terms, c5.67 for words, c5.66 Weak, c5.69 recognizable set, s3.4, d3.55 HR-, s4.2 of terms, s3.4.2 of words, e3.57(2), e3.61

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

726

recognizable set (cont.) of commutative words, s3.4.8 (semi-)effectively (term-), s3.4.4 VR-, s4.4 Reduction Theorem, t7.54 regular, s3.1.4 relabeling elementary, d2.87, s2.5.6 monadic second-order, d7.20 port, s2.5.1, s2.6.3 relational structure, s5.1.1, d5.1 parallel-composition of, e5.55 quotient, e7.3(1)size of, d5.3 union of, d5.34, e5.44, d9.35 relativization, s5.2.1, ℓ5.10 representation, d5.1 equivalent, s5.1.5 faithful, d5.1 of graphs, e5.2(2), d5.17 of terms, e5.2(3)of tree-decompositions, e5.2(4) of words, e5.2(1)strongly equivalent, d7.9 Restriction Theorem, t7.16 *R*-structure, *see* relational structure run, d3.46, d3.49, p6.14 accepting, d3.46 top-down, s8.1.2 satisfiability function, d6.5, s6.4.3 problem, s5.1.6, s7.5 decidable, s5.4 undecidable, s5.1.6 set, s5.1.2, s5.1.3, t7.42 L-, s5.1.6 of a predicate, s3.4.5 saturate, d3.63 second-order logic, see SO substitution, d2.125, p2.126

Index

linear, strict, nonerasing, e7.3(4) selection problem, s6.4.2 semi-linear set, s3.1.6, p4.16, p4.47(1) Semi-Linearity Theorem, t7.42 sentence, s5.1.2 series-composition, s1.1.3, e2.133, e5.53 generalized, r2.84(5)set variable, s5.1.4 s-graph, s2.3.1 signature AC, d5.85 functional, d2.1 derived, d2.125 fat, s7.1.7 many-sorted, d2.123 weak, s7.1.7 relational, d5.1 size of, d5.3, d9.33 single-use multi bottom-up transducer, s8.6 one-way multi word transducer, s8.6 tree-walking transducer, s8.2 slim term, p2.85, p7.27 SO, s5.1.3 solution, d3.6 oversolution, d3.6 sort, s2.6.1 source, s2.3.1 forgetting, s2.3.1, s2.6.2 renaming, s2.3.1, s2.6.2 spanning forest, d9.45, d9.48 tree, d2.13, d2.71 sparse (graph, structure, hypergraph) k-sparse, t4.51, d9.36, s9.4.2 uniformly, t4.51, t4.59, s9.4, d9.36 Sparseness Theorem, t5.22, t9.38 splitting of a formula, t5.39 of a hypergraph, d9.51 of a predicate, d3.81

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index More information

of a satisfiability set, s5.3.1 Splitting Theorem, s5.3.1, s5.3.5 FO, p5.37 MS, t5.39 QDP-QF, t5.57, c5.60 state, s3.3.1, s8.2, s8.5, s8.6 accessible, useful, d3.48 stepwise simulation, $\ell 8.8$ structure, see relational structure substitution Boolean, d6.32, *l*6.33 of formulas in a formula, $\ell 5.9$ of graphs for a vertex, d2.109 of hypergraphs for a hyperedge, d4.21 of set variables, d6.24(b), $\ell6.25$ of terms in a formula, $\ell 5.8$ of terms in a term, d2.6 second-order, d2.125, p2.126 linear, strict, nonerasing, e7.3(4) syntactic congruence, d3.65 tree, d2.14 system, see equation system term, d2.2, s5.1.2 Boolean set, d6.32 flattening of, d5.85 height of, d2.3 linear, d2.5 many-sorted, d2.124 representation of, e5.2(3)size of, d2.3 slim, p2.85, p7.27 subterm, d2.2, d2.6 type of, d2.35 value of, d2.2 with variables, d2.5 yield of, e8.1 theory, s5.1.6 bounded, s5.3.6, d5.59, d7.21

Index

727

of terms, a5.61, s8.1.3 decidable, s5.4 undecidable, s5.1.6 tournament, p2.114, p7.39 transducer attributed tree, s8.7 macro tree, s8.7 multi bottom-up tree-to-word, s8.6 one-way multi word, s8.6 pebble tree, s8.7 streaming, s8.6 top-down tree, s8.5, t8.15 tree-walking, s8.2, t8.17 tree-to-word, s8.2 tree-walking pushdown, s8.5, t8.13 tree-to-word, s8.5 two-way finite-state, s8.2, t8.10 transduction, s7.1.1 composition of, d7.1, t7.14, *l*9.60 copy, d7.25 decomposition of, p7.24, p7.26 graph, p-graph, s-graph, s7.1.3 monadic second-order, d7.2, d7.6, s7.1.3, s7.3 of terms, t8.10 of words, t8.17 rational, e8.3 union of, p7.18, d9.35 transitive closure, s5.2.2 tree, d2.13 derivation, s1.1.5, d3.43, d4.4 height of, d2.13 partial k-, r2.84(5) spanning, d2.13, d2.71 syntactic, d2.14 -walking, s8.2 tree-width, see width trim automaton, d3.48 equation system, s3.2.2 type algebra, s4.1.3

Cambridge University Press 978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach Bruno Courcelle and Joost Engelfriet Index <u>More information</u>

728

type (cont.) of a function. d2.123 of a p-graph, s2.5.1 of an s-graph, s2.3.1 of a term, d2.35 typed HR system, d4.12 variable, s5.2.5 typing, d2.131 unfolding, s3.2.1 union of automata, s6.3.1 of graphs, d2.22, d2.23, d2.87 of structures, d5.34, e5.44, d9.35 of transductions, p7.18, d9.35 unknown, d3.6 productive, d3.36 useful, d3.36 untyping, d2.129 value, see evaluation variable first-order, d2.5, s5.1.2

Index

relation, s5.1.3 set. s5.1.4 typed, s5.2.5 well-order, d2.20 width clique-width, d2.89, d2.90 linear, d2.89, d2.90 of a graph, s2.4.5 of a structure, s9.3.3, s9.3.4, d9.33 of a term, d2.35 of a tree-decomposition, d2.53 path-width, d2.57, d9.12 rank-width, d6.6 relational width, d9.26 tree-width, d2.53, d9.12 without *K*_{*n*,*n*}, p2.115, t4.51, t4.59 witness, d2.43, d2.97, d3.55, s3.4.3 canonical, s2.3.2 ground, s2.3.2 simple, p6.45 word, d2.7 commutative, s3.1.6, s3.4.8 representation of, e5.2(1)