
www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

Introduction

This book contributes to several fields of Fundamental Computer Science. It extends
to finite graphs several central concepts and results of Formal Language Theory
and it establishes their relationship to results about Fixed-Parameter Tractability.
These developments and results have applications in Structural Graph Theory. They
make an essential use of logic for expressing graph problems in a formal way and
for specifying graph classes and graph transformations. We will start by giving the
historical background to these contributions.

Formal Language Theory

This theory has been developed with different motivations. Linguistics and compila-
tion have been among the first ones, around 1960. In view of the applications to these
fields, different types of grammars, automata and transducers have been defined to
specify formal languages, i.e., sets of words, and transformations of words called
transductions, in finitary ways. The formalization of the semantics of sequential and
parallel programming languages, that uses respectively program schemes and traces,1

themodeling of biological development and yet other applications havemotivated the
study of new objects, in particular of sets of terms.2 These objects and their specifying
devices have since been investigated from a mathematical point of view, indepen-
dently of immediate applications. However, all these investigations have been guided
by three main types of questions: comparison of descriptive power, closure properties
(with effective constructions in case of positive answers) and decidability problems.
A context-free grammar generates words, hence specifies a formal language. How-

ever, each generated word has a derivation tree that represents its structure relative to
the considered grammar. Such a tree, which can also be viewed as a term, is usually

1 Traces are equivalence classes of words for congruences generated by commutations of letters; see
the book [*DiekRoz]. For program schemes, see [*Cou90a]. The list of references is divided into two
parts. The first part lists books, book chapters and survey articles: the * in, e.g., [*DiekRoz] indicates a
reference of this kind. The second part lists research articles and dissertations.

2 In Semantics, one is also interested in infinite words, traces and terms. In this book these will not be
considered.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

2 Introduction

the support of further computation, typically a translation into a word of another lan-
guage (this is the case in linguistics and in compilation). Hence, even for its initial
applications, Formal Language Theory has had to deal with trees as well as with
words. In Semantics, terms are even more important than words. Thus, sets of terms,
usually called tree languages3, and transductions of terms, called tree transductions,
have become central notions in Formal Language Theory.
Together with context-free grammars, finite (also called finite-state) automata are

among the basic notions of Language Theory, in particular for their applications to
lexical analysis and pattern matching. They were also used early on (around 1960) for
building algorithms to check the validity of certain logical formulas, especially those
of monadic second-order logic, in certain relational structures. On the other hand,
monadic second-order logic can be used to specify and to classify sets of words and
terms.4 There are deep relationships between monadic second-order formulas and
finite automata that recognize words and terms (see [*Tho97a]). The fundamental
result is that every language that is specified by a sentence of monadic second-order
logic (expressing a property of words) can be recognized by a finite automaton, and
vice-versa. Moreover, the finite automaton can be constructed effectively from the
sentence. This means that monadic second-order logic can be viewed as a high-level
specification language that can be compiled into “machine code”: a finite automaton
that recognizes the words that satisfy the specification. The same result holds for
terms, with respect to finite automata on trees. As a consequence of this fundamental
relationship, monadic second-order logic is now one of the basic tools used in Formal
Language Theory and its applications, in addition to context-free grammars, finite
automata and finite transducers (which are finite automata with output).
The extension of the basic concepts of Formal Language Theory to graphs is a

natural step because graphs generalize trees. However, graphs have already been
present from the beginnings in several of its fields. In compilation, one uses attribute
grammars that are context-free grammars equipped with semantic rules ([*AhoLSU],
[*Cre]). These rules associate graphs (called dependency graphs) with derivation
trees. An attribute grammar is actually the paradigmatic example of a context-free
graph grammar (based on hyperedge replacement rewriting rules, [*DreKH]). In
the semantics of parallelism, traces are canonically represented by graphs, and an
important concern is to specify them by finite automata ([*DiekRoz]).
One starting point of the research presented in this book has been the develop-

ment of a robust theory of context-free graph grammars, of recognizability of sets of
graphs (to be short, an algebraic formulation of finite automata) and of graph trans-
ductions. In order to use the theory of context-free grammars and recognizability in
arbitrary algebras initiated by Mezei andWright in [MezWri], we choose appropriate

3 In addition to being words, terms have canonical representations as labeled, rooted and ordered trees.
They are thus called “trees” but this terminology is inadequate.

4 This logical language and the related one called µ-calculus ([*ArnNiw]) are also convenient for
expressing properties of programs.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

Introduction 3

(and natural) operations on graphs. Thus, graphs become the value of terms that are
built with these (infinitely many) operations. Roughly speaking, a context-free graph
grammar is a finite set of rules of the form A0 → f (A1, . . . ,An), n ≥ 0, where each
Ai is a nonterminal of the grammar and f is one of the chosen graph operations. The
rule means that if the graphsG1, . . . ,Gn are generated by respectively A1, . . . ,An, then
A0 can generate the graph f (G1, . . . ,Gn). Such grammars have useful applications
to Graph Theory: they can be used to describe many graph classes in uniform ways
and to prove by inductive arguments certain properties of their graphs. Still roughly
speaking, a set of graphs is recognizable if there is a finite automaton that recognizes
all the terms that evaluate to a graph in the set. Thus, the automaton does not work
directly on the given graph, but rather on any term that represents that graph. In a
similar way one can define graph transductions through the use of tree transducers.
Note that, to describe a set of graphs or a graph transduction in a finitary way, one can
necessarily use only finitely many graph operations. As we will see, that is a rather
severe, but natural restriction.
Our main goal will be to show that the fundamental use of monadic second-order

logic as a high-level specification language carries over to graphs, not only for the
specification of recognizable sets of graphs, but also for context-free sets of graphs
and for certain types of graph transductions. This gives a new dimension to the above-
mentioned fundamental result for words and terms, because the properties of graphs
that can be specified in monadic second-order logic are more varied and useful than
those of words and terms.
We will specify a set of graphs by a monadic second-order sentence, and a graph

transduction by a tuple of monadic second-order formulas that define an “interpreta-
tion” of the output graph in the input graph. From such a specification we will show
how one can construct a finite automaton on terms, or a tree transducer in the second
case, that is related to the specification as explained above. Note that the logic “acts”
directly on the graphs, whereas the automata and transducers work on the terms that
denote these graphs. Thus, monadic second-order logic can be viewed as playing the
role of “finite automata on graphs” and “finite transducers of graphs” in our Formal
Language Theory for Graphs.

Graph algorithms

The above-mentioned developments have important applications for the construction
of polynomial-time algorithms on graphs. In his 16th NP-completeness column, pub-
lished in 1985 [John], Johnson reviews a number of NP-complete graph problems that
become polynomial-time solvable if their inputs are restricted to particular classes of
graphs such as those of trees, of series-parallel graphs, of planar graphs to name a
few. For many of these classes, in particular for trees, almost trees (with parameter
k), partial k-trees, series-parallel graphs, outerplanar graphs and cographs, the
efficient algorithms take advantage of certain hierarchical structures of the input

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

4 Introduction

graphs. Because of these structures, these graphs are somehow close to trees.5 The
notion of a partial k-tree has emerged as a powerful one subsuming many other types
of “tree-like graphs.” (The cographs have a canonical hierarchical structure but they
are not included in the class of partial k-trees for any fixed k .) Many articles have
produced polynomial-time algorithms for NP-complete problems restricted to partial
k-trees. In 1994, Hedetniemi has compiled a list of 238 references [*Hed] on partial
k-trees and algorithms concerning them. The notion of a partial k-tree has also been
used with a different terminology (tree-width, tree-decomposition) by Robertson and
Seymour in their study of the structure of graph classes that exclude fixed graphs as
minors. They formulate this notion in terms of particular decompositions of graphs,
called tree-decompositions, that are at the basis of the construction of polynomial-
time algorithms. Each tree-decomposition has a width, and a graph is a partial k-tree
if and only if it has tree-width at most k , which means that it has a tree-decomposition
of width at most k .
The recent theory of Fixed-Parameter Tractability (the founding book by Downey

and Fellows [*DowFel] was published in 1999) now gives a conceptual framework to
most of these results. The notion of a fixed-parameter tractable algorithm specifies
how the multiplicative constant factor of the time-complexity of a polynomial-time
algorithm depends on certain parts of the data. It happens that for most of the
graph algorithms based on tree-decompositions, the exponent of the polynomial is 1:
these algorithms are linear-time in the size of the input graphs, with multiplicative
“constant” factors that depend exponentially (or more) on the widths of the input
tree-decompositions.
The explanation for this fact is one of the main goals of this book. We will show

that, for a certain natural choice of graph operations, tree-decompositions correspond
to terms, and tree-decompositions of width at most k correspond to terms that are built
from a finite subset of those operations.Ageneral algorithmic result that encompasses
many of the above-mentioned results, follows from the fundamental relationship
between monadic second-order logic and finite automata discussed before: if the
considered problem is specified by a monadic second-order sentence (and this is
the case for many NP-complete graph problems not using numerical values in their
inputs), then a finite automaton on the terms that encode the tree-decompositions of
width at most k can be constructed (for each k) to give the answer to the considered
question (for example, Is the given graph 3-colorable?) where the input graph is
given by a tree-decomposition (or a term encoding it). The linearity result follows
because finite automata can be implemented so as to work in linear time (and because
a tree-decomposition of a graph can be found in linear time).

5 These classes can actually be generated by certain context-free graph grammars and the corresponding
hierarchical structures of the generated graphs are represented by their derivation trees. There is thus
a close relationship between the algorithmic issues and the extensions of language theoretic concepts
discussed above.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

Introduction 5

We will extend the case of tree-width bounded graphs (already discussed in
[*DowFel]) to another type of graph decompositions, based on another natural choice
of graph operations. This leads to the notion of clique-width of a graph. Clique-width
is more powerful than tree-width in the sense that every set of graphs of bounded
tree-width has bounded clique-width but not vice-versa, an example being the set of
cographs. On the other hand, in the above general result, the monadic second-order
sentences must be restricted to use quantifications on sets of vertices (instead of both
vertices and edges), so fewer graph problems can be specified. The algorithms are
cubic-time instead of linear-time because, for these graph operations, cubic time is
needed to find a term for a given graph.
The theory that will be exposed in the nine chapters of this book has arisen from

the confluence of the two main research directions presented above. The remainder
of this introduction will present in a more detailed way, but still informally, the main
concepts and results.

The role of logic

We will study and compare finitary descriptions of sets of finite graphs by using con-
cepts from Logic, Universal Algebra and Formal Language Theory. We first explain
the role of Logic. A graph6 can be considered as a logical structure (also called
relational structure) whose domain (also called its universe) consists of the vertices,
and that is equipped with a binary relation that represents adjacency. Graph proper-
ties can thus be expressed by logical formulas of different languages and classified
accordingly.

First-order formulas are rather weak in this respect because they can only express
local properties such as that a graph has maximum degree or diameter bounded by
a fixed integer. Most properties of interest in Graph Theory can be expressed by
second-order formulas: these formulas canuse quantifications on relations of arbitrary
arity. Unfortunately, little can be obtained from the expression of a graph property
in second-order logic. Our favorite logical language will be its restriction called
monadic second-order logic. Its formulas are the second-order formulas that only use
quantifications on unary relations, i.e., on sets. They can express many useful graph
properties like connectivity, p-colorability (for fixed p) and minor inclusion, whence
planarity. Such properties are said to be monadic second-order expressible, and the
corresponding sets of graphs are monadic second-order definable.
These logical expressions have interesting algorithmic consequences as explained

above, but only for graphs that are somehow “tree-like” (because 3-colorability
is NP-complete and expressible by a monadic second-order sentence). Monadic
second-order sentences are also used in Formal Language Theory to specify lan-
guages, i.e., sets of words or terms. The fundamental result establishes that monadic
second-order sentences and finite automata have the same descriptive power. But

6 In order to simplify the discussion, we only discuss simple graphs, i.e., graphs without parallel edges.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

6 Introduction

monadic second-order formulas are evenmore important for specifying sets of graphs
than for specifying languages because there is no convenient notion of graph automa-
ton. They replace finite automata, not only for specifying sets of graphs, but also
for specifying graph transformations. Such transformations, called monadic second-
order transductions, generalize the transductions of terms andwords defined by finite
automata with output called finite transducers.7 Independently of these language the-
oretic applications, monadic second-order transductions are technically useful for
constructing monadic second-order formulas because the inverse image of a monadic
second-order definable set of relational structures under a monadic second-order
transduction is monadic second-order definable.
However, monadic second-order logic alone yields no interesting results. In order

to be useful for the construction of algorithms, the expression of a graph property by
a monadic second-order sentence must be coupled with constraints on the graphs of
interest such as having bounded tree-width or bounded clique-width. The language
theoretical issues to be discussed belowwill also combine monadic second-order sen-
tences and the very same constraints. Hence, we will study certain hierarchical graph
decompositions, such as tree-decompositions, that fit with monadic second-order
logic.

Graph algebras

Graph decompositions will be formalized algebraically by terms written with appro-
priate graph operations. Hence, we will use concepts from Universal Algebra in
addition to ones from Logic.
For treating graphs as algebraic objects, i.e., as elements of appropriate algebras

(words and traces are elements of monoids), we will define graph operations that
generalize the concatenation of words. We will consider two natural ways to “con-
catenate” two graphs. One way is to “glue” them together, by identifying some of
their vertices. The other way is to “bridge” them (or rather, “bridge the gap between
them”), by adding edges between their vertices. Clearly, to obtain single valued oper-
ations, we have to specify which vertices must be “glued” or “bridged.” By means
of labels attached to vertices, we will specify that vertices with the same label must
be identified, or that edges must be created between all vertices with certain labels.
Hence, we will define “concatenation” operations on labeled graphs. To allow the
flexible use of vertex labels, we also define (unary) operations that modify these
labels. Terms written with these operations evaluate to finite (labeled) graphs. The
value G of a term t = f (t1, t2) is a certain combination, specified by f , of the values
of its subterms t1 and t2. These values are, roughly speaking, subgraphs of G (only
“roughly” because the labels of the vertices of the graphs defined by t1 and t2 may
differ from their labels in the resulting graph G). The same holds for all subterms of
t, hence, t represents a hierarchical decomposition of G.

7 In particular, the rational transductions that are transductions of words defined either by finite(-state)
transducers or, algebraically, in terms of homomorphisms and regular languages.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

Introduction 7

Based on the idea of “gluing” graphs (and using the numbers 1, . . . ,k + 1 as
labels), we will define, for each k , a finite set of graph operations, FHR

[k+1], that
generates exactly the graphs of tree-width at most k . Hence, these operations formal-
ize algebraically an existing combinatorial notion. They yield a graph algebra (that
generalizes the monoid of words) having countably many operations. We will call it
theHR algebra for reasons explained below.Another countable family of graph oper-
ations, also indexed by positive integers and based on the idea of “bridging” graphs,
will yield a different graph algebra, called the VR algebra, and a graph complexity
measure called clique-width. By definition, a graph has clique-width at most k if it is
generated by the analogous finite set of graph operations FVR

[k] . As observed before,
clique-width is more powerful than tree-width in the sense that every set of graphs of
bounded tree-width has bounded clique-width but not vice-versa. Many definitions
and results will be similar for these two graph algebras. We will explain below why
both algebras are interesting.
The introduction of graph operations is essential for our project of extending to

graphs the basic concepts of Formal Language Theory in a clean way. We will use for
that the algebraic notions of an equational set and of a recognizable set.An equational
set is a component of the least solution of an equation system written with set union
and the operations of the considered algebra. Equation systems formalize context-free
grammars that generate elements of the algebra: if such a context-free grammar has,
e.g., three rules A→ f (B,C), A→ g(A) and A→ a for the nonterminal A, where
B and C are two other nonterminals, f and g are operations of the algebra and a is
a constant of the algebra, then the corresponding equation system has the equation
A = f (B,C)∪ g(A)∪ {a} (where A, B and C now stand for sets of elements of the
algebra). The context-free languages are actually the equational sets of the monoids
of words over their terminal alphabets (due to the least fixed-point characterization
of context-free grammars of [GinRic] and [ChoSch]). A recognizable set is a set
saturated by a congruence having finitely many classes. The regular languages are
thus the recognizable sets of the monoids of words. When all elements of the algebra
can be denoted by a term (which is the case for the HR and VR algebra), a set is
recognizable if and only if there exists a finite automaton on terms that recognizes all
the terms that evaluate to an element of the set.
The chart of Figure I.1 shows some relationships between the notions defined

above. An arrow means “used for a definition or a construction.”

Two graph algebras

Since we will define two graph algebras, we will obtain two types of equational sets,
called theHR- and theVR-equational sets. For each k , the set of graphs of tree-width at
most k is HR-equational (because it is generated by the finite set of operationsFHR

[k+1]),
and similarly, the set of graphs of clique-width at most k is VR-equational. There are
also two types of recognizable sets of graphs, the HR- and the VR-recognizable
sets. Every HR-equational set is VR-equational and every VR-recognizable set is

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

8 Introduction

Figure I.1 The main notions.

HR-recognizable, but not vice-versa. The class of HR-equational sets is incomparable
with the class of HR-recognizable sets, and similarly for the VR algebra.
These facts show some important differences with the case of words. For words,

we have a unique algebraic structure based on a single operation, and the class of
recognizable sets (the regular languages) is properly included in that of equational
sets (the context-free languages). But graphs are intrinsically more complicated than
words: this explains why we need countably many operations and not just one. We
will explain next why we have two algebras and two (robust) classes of equational
sets that both generalize the class of context-free languages.
The two graph algebras have been defined initially in such a way that their equa-

tional sets coincide with existing context-free sets of graphs: the HR-equational sets
are actually (but not by definition) those generated by certain context-free graph
grammars based on a rewriting mechanism called hyperedge replacement (that uses
“gluing” of graphs) and we call the corresponding algebra the HR algebra to refer to
this fact; the other algebra, called the VR algebra, has been designed similarly so that
its equational sets are those generated by the context-free graph grammars based on
vertex replacement (that uses “bridging” of graphs); see [*DreKH] and [*EngRoz]
respectively for these two types of graph grammars.
Many properties of the equational and recognizable sets of graphs of both kinds are

just particular instances of those of the equational and recognizable sets in arbitrary
algebras. By using this algebraic approach, we generalize the context-free languages
without having to define a graph rewriting mechanism and check that such rewriting
is actually context-free (the general notion of context-free rewriting is defined in
[Cou87]). Similarly, we generalize the regular languages without having to define
any notion of graph automaton and to look for the closure properties of the class of
sets of graphs that are recognized by such automata.

Monadic second-order logic and the VR graph algebra

We first discuss the equational sets and the recognizable sets of the VR algebra, and
their relationships with monadic second-order logic.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

Introduction 9

Two main results of this book are the Recognizability Theorem and the Equation-
ality Theorem. They relate two ways of handling graphs: the “logical way” by which
graphs are characterized in terms of what they are made of and contain (vertices,
edges, paths, minors, subgraphs with particular properties) and the “algebraic way”
bywhich sets of graphs are characterizedmore globally bymeans of equation systems
and congruences. In the latter approach, graphs are treated as elements of algebras
and related with other elements that are not necessarily among their subgraphs.
The Recognizability Theorem says that if a set of graphs is monadic second-order

definable, then it is VR-recognizable. The Equationality Theorem says that a set of
graphs is VR-equational if and only if it is the image of the set of finite trees under a
monadic second-order transduction8. We now describe some consequences of these
two results.
The Recognizability Theorem entails that if a graph G is defined by a term t writ-

ten with operations of the VR algebra belonging to any fixed finite set F , then one
can check in time O(|t|) whether or not G satisfies a fixed monadic second-order
property. This fact, based on a compilation of monadic second-order formulas into
finite automata over F , is one of the keys9 to the construction of fixed-parameter
tractable algorithms for the verification of monadic second-order properties of graphs
of bounded clique-width (whence also of graphs of bounded tree-width since bounded
tree-width implies bounded clique-width). Another consequence is the Filtering The-
orem, which says that the graphs of a VR-equational set that satisfy a fixed monadic
second-order property (for example planarity) form aVR-equational set. This is based
on a Filtering Theorem that holds in all algebras and says that the intersection of an
equational set and a recognizable one is equational (generalizing the corresponding
fact for context-free and regular languages). Since the emptiness of an equational set
is decidable, we get as another corollary that the monadic second-order satisfiability
problem is decidable for each VR-equational set L. This means that one can decide
whether or not a givenmonadic second-order sentence is satisfied by some graph in L.
The Equationality Theorem entails that the class of VR-equational sets of graphs is

preserved under monadic second-order transductions, because the class of monadic
second-order transductions is closed under composition. This corollary strengthens
the FilteringTheorem. It is similar to the fact that the image of a context-free language
under a rational transduction is context-free.

Monadic second-order logic and the HR graph algebra

The Recognizability and Equationality Theorems have versions relative to the HR
algebra. To describe them, we must go back to the initial definition of monadic
second-order formulas (MS formulas in the sequel) interpreted in graphs: they only

8 This means, informally, that it is the set of graphs “defined inside finite trees” by a fixed finite tuple of
monadic second-order formulas. These transductions are based on, and extend, the model-theoretical
notion of “interpretation.”

9 The other one is a polynomial-time algorithm that finds a term evaluating to a given graph G if one
exists.

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89833-1 - Graph Structure and Monadic Second-Order Logic: A Language-Theoretic
Approach
Bruno Courcelle and Joost Engelfriet
Excerpt
More information

10 Introduction

use quantifications on vertices and sets of vertices. This is due to the chosen represen-
tation of a graph by a relational structure whose domain is its set of vertices. However,
we can also express logically the properties of a graph G via its incidence graph
Inc(G). The vertices of this (bipartite) graph are the vertices and the edges ofG, and its
adjacency relation links a vertex and the edges incidentwith it. Thus, monadic second-
order formulas to be interpreted in Inc(G) (MS2 formulas in the sequel) can also use
quantifications on edges and sets of edges. A graph property is MS2-expressible
if it is expressible by an MS2 formula, and the corresponding set of graphs is
MS2-definable. The notation MS2 refers to this extension of the initially defined
language (referred to as MS in the sequel). It is strictly more expressive. For exam-
ple, the existence of a perfect matching is MS2-expressible but not MS-expressible.
However, MS2 formulas are not more expressive than MS formulas for properties of
words, of trees and of certain types of graphs such as planar graphs and, for each k , of
graphs of degree atmost k . These facts show the existence of deep links between struc-
tural graph properties (such as planarity) and the expressive power ofMS2 versusMS
sentences.
The Recognizability Theorem for the HR algebra says that every MS2-definable

set of graphs is HR-recognizable, and the Equationality Theorem says that a set of
graphs is HR-equational if and only if the set of its incidence graphs is the image
of the set of finite trees under a monadic second-order transduction. We obtain an
algorithmic consequence similar to the one we have discussed for MS-expressible
problems and the VR algebra: if a graph is defined by a term t over FHR

[k] for some
fixed k , then one can check in timeO(|t|)whether or not it satisfies a fixedMS2 prop-
erty. Since there exists a polynomial-time algorithm that decomposes appropriately
the input graphs, we obtain, for each MS2 property, a fixed-parameter tractable veri-
fication algorithm, tree-width being the parameter. The algorithm for MS properties
applies to larger classes of graphs, because bounded tree-width implies bounded
clique-width, but to less properties than this one, because not every MS2-expressible
property is MS-expressible. The notions of tree-width and clique-width are thus
both useful, for solving different problems. We also have a Filtering Theorem for
the HR-equational sets and MS2-expressible properties, whence the decidability of
the MS2-satisfiability problem for each HR-equational set. The Equationality The-
orem for the HR algebra entails that the class of HR-equational sets of graphs is
preserved under the monadic second-order transductions that transform incidence
graphs.
A graph is uniformly k-sparse if its number of edges is at most k times its number

of vertices, and the same holds for all its subgraphs. Another main result of this book
is the Sparseness Theorem: MS2 formulas are not more expressive than MS formulas
for properties of uniformly k-sparse graphs, for each fixed k . The above-mentioned
types of graphs are uniformly k-sparse for some k .

http://www.cambridge.org/9780521898331
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9780521898331:

