Contents

Preface ix

An Invitation to Analytic Combinatorics 1

Part A. Symbolic Methods 13

I. Combinatorial Structures and Ordinary Generating Functions 15
 - I.1. Symbolic enumeration methods 16
 - I.2. Admissible constructions and specifications 24
 - I.3. Integer compositions and partitions 39
 - I.4. Words and regular languages 49
 - I.5. Tree structures 64
 - I.6. Additional constructions 83
 - I.7. Perspective 92

II. Labelled Structures and Exponential Generating Functions 95
 - II.1. Labelled classes 96
 - II.2. Admissible labelled constructions 100
 - II.3. Surjections, set partitions, and words 106
 - II.4. Alignments, permutations, and related structures 119
 - II.5. Labelled trees, mappings, and graphs 125
 - II.6. Additional constructions 136
 - II.7. Perspective 147

III. Combinatorial Parameters and Multivariate Generating Functions 151
 - III.1. An introduction to bivariate generating functions (BGFs) 152
 - III.2. Bivariate generating functions and probability distributions 156
 - III.3. Inherited parameters and ordinary MGFs 163
 - III.4. Inherited parameters and exponential MGFs 174
 - III.5. Recursive parameters 181
 - III.6. Complete generating functions and discrete models 186
 - III.7. Additional constructions 198
 - III.8. Extremal parameters 214
 - III.9. Perspective 218

Part B. Complex Asymptotics 221

IV. Complex Analysis, Rational and Meromorphic Asymptotics 223
 - IV.1. Generating functions as analytic objects 225
 - IV.2. Analytic functions and meromorphic functions 229
CONTENTS

IV. SINGULARITIES AND EXPONENTIAL GROWTH OF COEFFICIENTS
- 3. Singularities and exponential growth of coefficients 238
- 4. Closure properties and computable bounds 249
- 5. Rational and meromorphic functions 255
- 6. Localization of singularities 263
- 7. Singularities and functional equations 275
- 8. Perspective 286

V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS
- 1. A roadmap to rational and meromorphic asymptotics 289
- 2. The supercritical sequence schema 293
- 3. Regular specifications and languages 300
- 4. Nested sequences, lattice paths, and continued fractions 318
- 5. Paths in graphs and automata 336
- 6. Transfer matrix models 356
- 7. Perspective 373

VI. SINGULARITY ANALYSIS OF GENERATING FUNCTIONS
- 1. A glimpse of basic singularity analysis theory 376
- 2. Coefficient asymptotics for the standard scale 380
- 3. Transfers 389
- 4. The process of singularity analysis 392
- 5. Multiple singularities 398
- 6. Intermezzo: functions amenable to singularity analysis 401
- 7. Inverse functions 402
- 8. Polylogarithms 408
- 9. Functional composition 411
- 10. Closure properties 418
- 11. Tauberian theory and Darboux’s method 433
- 12. Perspective 437

VII. APPLICATIONS OF SINGULARITY ANALYSIS
- 1. A roadmap to singularity analysis asymptotics 441
- 2. Sets and the exp–log schema 445
- 3. Simple varieties of trees and inverse functions 452
- 4. Tree-like structures and implicit functions 467
- 5. Unlabelled non-plane trees and Pólya operators 475
- 6. Irreducible context-free structures 482
- 7. The general analysis of algebraic functions 493
- 8. Combinatorial applications of algebraic functions 506
- 9. Ordinary differential equations and systems 518
- 10. Singularity analysis and probability distributions 532
- 11. Perspective 538

VIII. SADDLE-POINT ASYMPTOTICS
- 1. Landscapes of analytic functions and saddle-points 541
- 2. Saddle-point bounds 546
- 3. Overview of the saddle-point method 551
- 4. Three combinatorial examples 558
- 5. Admissibility 564
- 6. Integer partitions 574
CONTENTS

VIII. 7. Saddle-points and linear differential equations 581
VIII. 8. Large powers 585
VIII. 9. Saddle-points and probability distributions 594
VIII. 10. Multiple saddle-points 600
VIII. 11. Perspective 606

Part C. RANDOM STRUCTURES 609
IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS 611
IX. 1. Limit laws and combinatorial structures 613
IX. 2. Discrete limit laws 620
IX. 3. Combinatorial instances of discrete laws 628
IX. 4. Continuous limit laws 638
IX. 5. Quasi-powers and Gaussian limit laws 644
IX. 6. Perturbation of meromorphic asymptotics 650
IX. 7. Perturbation of singularity analysis asymptotics 666
IX. 8. Perturbation of saddle-point asymptotics 690
IX. 9. Local limit laws 694
IX. 10. Large deviations 699
IX. 11. Non-Gaussian continuous limits 703
IX. 12. Multivariate limit laws 715
IX. 13. Perspective 716

Part D. APPENDICES 719
Appendix A. AUXILIARY ELEMENTARY NOTIONS 721
A.1. Arithmetical functions 721
A.2. Asymptotic notations 722
A.3. Combinatorial probability 727
A.4. Cycle construction 729
A.5. Formal power series 730
A.6. Lagrange inversion 732
A.7. Regular languages 733
A.8. Stirling numbers 735
A.9. Tree concepts 737

Appendix B. BASIC COMPLEX ANALYSIS 739
B.1. Algebraic elimination 739
B.2. Equivalent definitions of analyticity 741
B.3. Gamma function 743
B.4. Holonomic functions 748
B.5. Implicit Function Theorem 753
B.6. Laplace’s method 755
B.7. Mellin transforms 762
B.8. Several complex variables 767

Appendix C. CONCEPTS OF PROBABILITY THEORY 769
C.1. Probability spaces and measure 769
C.2. Random variables 771
C.3. Transforms of distributions 772
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.4. Special</td>
<td>774</td>
</tr>
<tr>
<td>distributions</td>
<td></td>
</tr>
<tr>
<td>C.5. Convergence in</td>
<td>776</td>
</tr>
<tr>
<td>law</td>
<td></td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY 779

INDEX 801