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Preface

The main purpose of this book is to bring together a number of results concern-
ing the embedding of ‘finite-dimensional’ compact sets into Euclidean spaces,
where an ‘embedding’ of a metric space (X, o) into R” is to be understood as a
homeomorphism from X onto its image. A secondary aim is to present, along-
side such ‘abstract’ embedding theorems, more concrete embedding results
for the finite-dimensional attractors that have been shown to exist in many
infinite-dimensional dynamical systems.

In addition to its summary of embedding results, the book also gives a unified
survey of four major definitions of dimension (Lebesgue covering dimension,
Hausdorff dimension, upper box-counting dimension, and Assouad dimension).
In particular, it provides a more sustained exposition of the properties of the box-
counting dimension than can be found elsewhere; indeed, the abstract results
for sets with finite box-counting dimension are those that are taken further in
the second part of the book, which treats finite-dimensional attractors.

While the various measures of dimension discussed here find a natural
application in the theory of fractals, this is not a book about fractals. An
example to which we will return continually is an orthogonal sequence in an
infinite-dimensional Hilbert space, which is very far from being a ‘fractal’. In
particular, this class of examples can be used to show the sharpness of three of
the embedding theorems that are proved here.

My models have been the classic text of Hurewicz & Wallman (1941) on
the topological dimension, and of course Falconer’s elegant 1985 tract which
concentrates on the Hausdorff dimension (and Hausdorff measure). It is a
pleasure to acknowledge formally my indebtedness to Hunt & Kaloshin’s 1999
paper ‘Regularity of embeddings of infinite-dimensional fractal sets into finite-
dimensional spaces’. It has had a major influence on my own research over the
last ten years, and one could view this book as an extended exploration of the
ramifications of the approach that they adopted there.

Xi
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xii Preface

My interest in abstract embedding results is related to the question of whether
one can reproduce the dynamics on a finite-dimensional attractor using a finite-
dimensional system of ordinary differential equations (see Chapter 10 of Eden,
Foias, Nicolaenko, & Temam (1994), or Chapter 16 of Robinson (2001), for
example). However, there are still only partial results in this direction, so this
potential application is not treated here; for an up-to-date discussion see the
paper by Pinto de Moura, Robinson, & Sanchez-Gabites (2010).

I started writing this book while I was a Royal Society University Research
Fellow, and many of the results here derive from work done during that
time. I am currently supported by an EPSRC Leadership Fellowship, Grant
EP/G007470/1. T am extremely grateful to both the Royal Society and to the
EPSRC for their support.

I would like to thank Alexandre Carvalho, Peter Friz, Igor Kukavica, José
Langa, Eric Olson, Eleonora Pinto de Moura, and Alejandro Vidal Lépez, all of
whom have had a hand in material that is presented here. In particular, Eleonora
was working on closely-related problems for her doctoral thesis during most of
the time that I was writing this book, and our frequent discussions have shaped
much of the content and my approach to the material. I had comments on a
draft version of the manuscript from Witold Sadowski, Jaime Sanchez-Gabites,
and Nicholas Sharples: I am extremely grateful for their helpful and perceptive
comments. David Tranah, Clare Dennison, and Emma Walker at Cambridge
University Press have been most patient as one deadline after another was
missed and extended; that one was finally met (nearly) is due in large part to
a kind invitation from Marco Sammartino to Palermo, where I gave a series of
lectures on some of the material in this book in November 2009.

Many thanks to my parents and to my mother-in-law; in addition to all their
other support, their many days with the children have made this work possible.
Finally, of course, thanks to Tania, my wife, and our children Joseph and Kate,
who make it all worthwhile; this book is dedicated to them.
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