CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO

186 Dimensions, Embeddings, and Attractors
To my family: Tania, Joseph, & Kate.
Contents

Preface
Introduction

PART I: FINITE-DIMENSIONAL SETS

1 **Lebesgue covering dimension**
 1.1 Covering dimension
 1.2 The covering dimension of I_n
 1.3 Embedding sets with finite covering dimension
 1.4 Large and small inductive dimensions
 Exercises

2 **Hausdorff measure and Hausdorff dimension**
 2.1 Hausdorff measure and Lebesgue measure
 2.2 Hausdorff dimension
 2.3 The Hausdorff dimension of products
 2.4 Hausdorff dimension and covering dimension
 Exercises

3 **Box-counting dimension**
 3.1 The definition of the box-counting dimension
 3.2 Basic properties of the box-counting dimension
 3.3 Box-counting dimension of products
 3.4 Orthogonal sequences
 Exercises

4 **An embedding theorem for subsets of \mathbb{R}^N in terms of the upper box-counting dimension**
Contents

5 Prevalence, probe spaces, and a crucial inequality
- 5.1 Prevalence
- 5.2 Measures based on sequences of linear subspaces
- Exercises

6 Embedding sets with \(d_H(X - X)\) finite
- 6.1 No linear embedding is possible when \(d_H(X)\) is finite
- 6.2 Embedding sets with \(d_H(X - X)\) finite
- 6.3 No modulus of continuity is possible for \(L^{-1}\)

7 Thickness exponents
- 7.1 The thickness exponent
- 7.2 Lipschitz deviation
- 7.3 Dual thickness
- Exercises

8 Embedding sets of finite box-counting dimension
- 8.1 Embedding sets with Hölder continuous parametrisation
- 8.2 Sharpness of the Hölder exponent
- Exercises

9 Assouad dimension
- 9.1 Homogeneous spaces and the Assouad dimension
- 9.2 Assouad dimension and products
- 9.3 Orthogonal sequences
- 9.4 Homogeneity is not sufficient for a bi-Lipschitz embedding
- 9.5 Almost bi-Lipschitz embeddings
- 9.6 Sharpness of the logarithmic exponent
- 9.7 Consequences for embedding compact metric spaces
- Exercises

PART II: Finite-Dimensional Attractors

10 Partial differential equations and nonlinear semigroups
- 10.1 Nonlinear semigroups and attractors
- 10.2 Sobolev spaces and fractional power spaces
- 10.3 Abstract semilinear parabolic equations
- 10.4 The two-dimensional Navier–Stokes equations
- Exercises
Contents

11 Attracting sets in infinite-dimensional systems 115
11.1 Global attractors 115
11.2 Existence of the global attractor 115
11.3 Example 1: semilinear parabolic equations 118
11.4 Example 2: the two-dimensional Navier–Stokes equations 119
Exercises 121

12 Bounding the box-counting dimension of attractors 123
12.1 Coverings of $T[B(0, 1)]$ via finite-dimensional approximations 125
12.2 A dimension bound when $Df \in \mathcal{L}_{\lambda/2}(\mathcal{D})$, $\lambda < 1/2$ 129
12.3 Finite dimension when $Df \in \mathcal{L}_1(X)$ 130
12.4 Semilinear parabolic equations in Hilbert spaces 130
Exercises 132

13 Thickness exponents of attractors 136
13.1 Zero thickness 136
13.2 Zero Lipschitz deviation 138
Exercises 143

14 The Takens Time-Delay Embedding Theorem 145
14.1 The finite-dimensional case 145
14.2 Periodic orbits and the Lipschitz constant for ordinary differential equations 152
14.3 The infinite-dimensional case 154
14.4 Periodic orbits and the Lipschitz constant for semilinear parabolic equations 156
Exercises 158

15 Parametrisation of attractors via point values 160
15.1 Real analytic functions and the order of vanishing 161
15.2 Dimension and thickness of \mathcal{A} in $C'(\Omega, \mathbb{R}^d)$ 163
15.3 Proof of Theorem 15.1 165
15.4 Applications 167
Exercises 169

Solutions to exercises 170
References 196
Index 202
The main purpose of this book is to bring together a number of results concerning the embedding of ‘finite-dimensional’ compact sets into Euclidean spaces, where an ‘embedding’ of a metric space (X, ρ) into \mathbb{R}^n is to be understood as a homeomorphism from X onto its image. A secondary aim is to present, alongside such ‘abstract’ embedding theorems, more concrete embedding results for the finite-dimensional attractors that have been shown to exist in many infinite-dimensional dynamical systems.

In addition to its summary of embedding results, the book also gives a unified survey of four major definitions of dimension (Lebesgue covering dimension, Hausdorff dimension, upper box-counting dimension, and Assouad dimension). In particular, it provides a more sustained exposition of the properties of the box-counting dimension than can be found elsewhere; indeed, the abstract results for sets with finite box-counting dimension are those that are taken further in the second part of the book, which treats finite-dimensional attractors.

While the various measures of dimension discussed here find a natural application in the theory of fractals, this is not a book about fractals. An example to which we will return continually is an orthogonal sequence in an infinite-dimensional Hilbert space, which is very far from being a ‘fractal’. In particular, this class of examples can be used to show the sharpness of three of the embedding theorems that are proved here.

My models have been the classic text of Hurewicz & Wallman (1941) on the topological dimension, and of course Falconer’s elegant 1985 tract which concentrates on the Hausdorff dimension (and Hausdorff measure). It is a pleasure to acknowledge formally my indebtedness to Hunt & Kaloshin’s 1999 paper ‘Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces’. It has had a major influence on my own research over the last ten years, and one could view this book as an extended exploration of the ramifications of the approach that they adopted there.
Preface

My interest in abstract embedding results is related to the question of whether one can reproduce the dynamics on a finite-dimensional attractor using a finite-dimensional system of ordinary differential equations (see Chapter 10 of Eden, Foias, Nicolaenko, & Temam (1994), or Chapter 16 of Robinson (2001), for example). However, there are still only partial results in this direction, so this potential application is not treated here; for an up-to-date discussion see the paper by Pinto de Moura, Robinson, & Sánchez-Gabites (2010).

I started writing this book while I was a Royal Society University Research Fellow, and many of the results here derive from work done during that time. I am currently supported by an EPSRC Leadership Fellowship, Grant EP/G007470/1. I am extremely grateful to both the Royal Society and to the EPSRC for their support.

I would like to thank Alexandre Carvalho, Peter Friz, Igor Kukavica, José Langa, Eric Olson, Eleonora Pinto de Moura, and Alejandro Vidal López, all of whom have had a hand in material that is presented here. In particular, Eleonora was working on closely-related problems for her doctoral thesis during most of the time that I was writing this book, and our frequent discussions have shaped much of the content and my approach to the material. I had comments on a draft version of the manuscript from Witold Sadowski, Jaime Sánchez-Gabites, and Nicholas Sharples: I am extremely grateful for their helpful and perceptive comments. David Tranah, Clare Dennison, and Emma Walker at Cambridge University Press have been most patient as one deadline after another was missed and extended; that one was finally met (nearly) is due in large part to a kind invitation from Marco Sammartino to Palermo, where I gave a series of lectures on some of the material in this book in November 2009.

Many thanks to my parents and to my mother-in-law; in addition to all their other support, their many days with the children have made this work possible. Finally, of course, thanks to Tania, my wife, and our children Joseph and Kate, who make it all worthwhile; this book is dedicated to them.