CAMBRIDGE TRACTS IN MATHEMATICS

General Editors

B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO

186 Dimensions, Embeddings, and Attractors

Cambridge University Press 978-0-521-89805-8 - Dimensions, Embeddings, and Attractors James C. Robinson Frontmatter More information

Dimensions, Embeddings, and Attractors

JAMES C. ROBINSON University of Warwick

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521898058

© J. C. Robinson 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Robinson, James C. (James Cooper), 1969– Dimensions, Embeddings, and Attractors / James C. Robinson. p. cm. – (Cambridge Tracts in Mathematics ; 186) Includes bibliographical references and index. ISBN 978-0-521-89805-8 (hardback) 1. Dimension theory (Topology) 2. Attractors (Mathematics) 3. Topological imbeddings. I. Title. II. Series. QA611.3.R63 2011 515'.39 – dc22 2010042726

ISBN 978-0-521-89805-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-89805-8 - Dimensions, Embeddings, and Attractors James C. Robinson Frontmatter More information

To my family: Tania, Joseph, & Kate.

Cambridge University Press
978-0-521-89805-8 - Dimensions, Embeddings, and Attractors
James C. Robinson
Frontmatter
More information

Contents

	Pref	ace	<i>page</i> xi		
Introduction					
	PART I: FINITE-DIMENSIONAL SETS				
1	Lebesgue covering dimension				
	1.1	Covering dimension	8		
	1.2	The covering dimension of I_n	10		
	1.3	Embedding sets with finite covering dimension	12		
	1.4	Large and small inductive dimensions	17		
	Exer	cises	18		
2	Hau	sdorff measure and Hausdorff dimension	20		
	2.1	Hausdorff measure and Lebesgue measure	20		
	2.2	Hausdorff dimension	23		
	2.3	The Hausdorff dimension of products	25		
	2.4	Hausdorff dimension and covering dimension	26		
	Exercises				
3	Box-counting dimension				
	3.1	The definition of the box-counting dimension	31		
	3.2	Basic properties of the box-counting dimension	33		
	3.3	Box-counting dimension of products	35		
	3.4	Orthogonal sequences	36		
	Exer	cises	39		
4	Ane	embedding theorem for subsets of \mathbb{R}^N in terms of the			
		er box-counting dimension	41		

viii	viii Contents				
5	 Prevalence, probe spaces, and a crucial inequality 5.1 Prevalence 5.2 Measures based on sequences of linear subspaces Exercises 	47 47 49 56			
6	Embedding sets with $d_{\rm H}(X - X)$ finite 6.1 No linear embedding is possible when $d_{\rm H}(X)$ is finite 6.2 Embedding sets with $d_{\rm H}(X - X)$ finite 6.3 No modulus of continuity is possible for L^{-1}	57 58 60 62			
7	Thickness exponents7.1The thickness exponent7.2Lipschitz deviation7.3Dual thicknessExercises	64 65 67 69 73			
8	Embedding sets of finite box-counting dimension	75			
	 8.1 Embedding sets with Hölder continuous parametrisation 8.2 Sharpness of the Hölder exponent Exercises 	75 77 81			
9	Assouad dimension	83			
,	9.1 Homogeneous spaces and the Assouad dimension	83			
	9.2 Assouad dimension and products	86			
	9.3 Orthogonal sequences	88			
	9.4 Homogeneity is not sufficient for a bi-Lipschitz				
	embedding	91			
	9.5 Almost bi-Lipschitz embeddings9.6 Sharpness of the logarithmic exponent	94 99			
	9.7 Consequences for embedding compact	99			
	metric spaces	100			
	Exercises				
	PART II: FINITE-DIMENSIONAL ATTRACTORS				
10	Partial differential equations and nonlinear semigroups				
	10.1 Nonlinear semigroups and attractors	105			
	10.2 Sobolev spaces and fractional power spaces	106			
	10.3 Abstract semilinear parabolic equations	108			
	10.4 The two-dimensional Navier–Stokes equations	109			
	Exercises	113			

	Contents	ix
11	Attracting sets in infinite-dimensional systems	115
	11.1 Global attractors	115
	11.2 Existence of the global attractor	115
	11.3 Example 1: semilinear parabolic equations	118
	11.4 Example 2: the two-dimensional Navier–Stokes	
	equations	119
	Exercises	121
12	Bounding the box-counting dimension of attractors	123
	12.1 Coverings of $T[B(0, 1)]$ via finite-dimensional	
	approximations	125
	12.2 A dimension bound when $Df \in \mathscr{L}_{\lambda/2}(\mathscr{B}), \lambda < \frac{1}{2}$	129
	12.3 Finite dimension when $Df \in \mathscr{L}_1(X)$	130
	12.4 Semilinear parabolic equations in Hilbert spaces	130
	Exercises	132
13	Thickness exponents of attractors	136
	13.1 Zero thickness	136
	13.2 Zero Lipschitz deviation	138
	Exercises	143
14	The Takens Time-Delay Embedding Theorem	145
	14.1 The finite-dimensional case	145
	14.2 Periodic orbits and the Lipschitz constant for ordinary	
	differential equations	152
	14.3 The infinite-dimensional case	154
	14.4 Periodic orbits and the Lipschitz constant for semilinear	
	parabolic equations	156
	Exercises	158
15	Parametrisation of attractors via point values	160
	15.1 Real analytic functions and the order of vanishing	161
	15.2 Dimension and thickness of \mathscr{A} in $C^r(\Omega, \mathbb{R}^d)$	163
	15.3 Proof of Theorem 15.1	165
	15.4 Applications	167
	Exercises	169
	Solutions to exercises	170
	References	196
	Index	202

Cambridge University Press 978-0-521-89805-8 - Dimensions, Embeddings, and Attractors James C. Robinson Frontmatter More information

Preface

The main purpose of this book is to bring together a number of results concerning the embedding of 'finite-dimensional' compact sets into Euclidean spaces, where an 'embedding' of a metric space (X, ϱ) into \mathbb{R}^n is to be understood as a homeomorphism from X onto its image. A secondary aim is to present, alongside such 'abstract' embedding theorems, more concrete embedding results for the finite-dimensional attractors that have been shown to exist in many infinite-dimensional dynamical systems.

In addition to its summary of embedding results, the book also gives a unified survey of four major definitions of dimension (Lebesgue covering dimension, Hausdorff dimension, upper box-counting dimension, and Assouad dimension). In particular, it provides a more sustained exposition of the properties of the boxcounting dimension than can be found elsewhere; indeed, the abstract results for sets with finite box-counting dimension are those that are taken further in the second part of the book, which treats finite-dimensional attractors.

While the various measures of dimension discussed here find a natural application in the theory of fractals, this is not a book about fractals. An example to which we will return continually is an orthogonal sequence in an infinite-dimensional Hilbert space, which is very far from being a 'fractal'. In particular, this class of examples can be used to show the sharpness of three of the embedding theorems that are proved here.

My models have been the classic text of Hurewicz & Wallman (1941) on the topological dimension, and of course Falconer's elegant 1985 tract which concentrates on the Hausdorff dimension (and Hausdorff measure). It is a pleasure to acknowledge formally my indebtedness to Hunt & Kaloshin's 1999 paper 'Regularity of embeddings of infinite-dimensional fractal sets into finitedimensional spaces'. It has had a major influence on my own research over the last ten years, and one could view this book as an extended exploration of the ramifications of the approach that they adopted there. Cambridge University Press 978-0-521-89805-8 - Dimensions, Embeddings, and Attractors James C. Robinson Frontmatter <u>More information</u>

xii

Preface

My interest in abstract embedding results is related to the question of whether one can reproduce the dynamics on a finite-dimensional attractor using a finitedimensional system of ordinary differential equations (see Chapter 10 of Eden, Foias, Nicolaenko, & Temam (1994), or Chapter 16 of Robinson (2001), for example). However, there are still only partial results in this direction, so this potential application is not treated here; for an up-to-date discussion see the paper by Pinto de Moura, Robinson, & Sánchez-Gabites (2010).

I started writing this book while I was a Royal Society University Research Fellow, and many of the results here derive from work done during that time. I am currently supported by an EPSRC Leadership Fellowship, Grant EP/G007470/1. I am extremely grateful to both the Royal Society and to the EPSRC for their support.

I would like to thank Alexandre Carvalho, Peter Friz, Igor Kukavica, José Langa, Eric Olson, Eleonora Pinto de Moura, and Alejandro Vidal López, all of whom have had a hand in material that is presented here. In particular, Eleonora was working on closely-related problems for her doctoral thesis during most of the time that I was writing this book, and our frequent discussions have shaped much of the content and my approach to the material. I had comments on a draft version of the manuscript from Witold Sadowski, Jaime Sánchez-Gabites, and Nicholas Sharples: I am extremely grateful for their helpful and perceptive comments. David Tranah, Clare Dennison, and Emma Walker at Cambridge University Press have been most patient as one deadline after another was missed and extended; that one was finally met (nearly) is due in large part to a kind invitation from Marco Sammartino to Palermo, where I gave a series of lectures on some of the material in this book in November 2009.

Many thanks to my parents and to my mother-in-law; in addition to all their other support, their many days with the children have made this work possible. Finally, of course, thanks to Tania, my wife, and our children Joseph and Kate, who make it all worthwhile; this book is dedicated to them.