
Introduction

Part I of this book treats four different definitions of dimension, and investigates
what being ‘finite dimensional’ implies in terms of embeddings into Euclidean
spaces for each of these definitions.

Whitney (1936) showed that any abstract n-dimensional Cr manifold is Cr -
homeomorphic to an analytic submanifold in R

2n+1. This book treats embed-
dings for much more general sets that need not have such a smooth structure;
one might say ‘fractals’, but we will not be concerned with the fractal nature
of these sets (whatever one takes that to mean).

We will consider four major definitions of dimension:

(i) The (Lebesgue) covering dimension dim(X), based on the maximum
number of simultaneously intersecting sets in refinements of open covers
of X (Chapter 1). This definition is topologically invariant, and is primarily
used in the classical and abstract ‘Dimension Theory’, elegantly developed
in Hurewicz & Wallman’s 1941 text, and subsequently by Engelking
(1978), who updates and extends their treatment.

(ii) The Hausdorff dimension dH(X), the value of d where the ‘d-dimensional
Hausdorff measure’ of X switches from ∞ to zero (Chapter 2). Hausdorff
measures (and hence the Hausdorff dimension) play a large role in geo-
metric measure theory (Federer, 1969), and in the theory of dynamical
systems (see Pesin (1997)); the standard reference is Falconer’s 1985
tract, and subsequent volumes (Falconer, 1990, 1997).

(iii) The (upper) box-counting dimension dB(X), essentially the scaling as
ε → 0 of N (X, ε), the number of ε-balls required to cover X, i.e.
N (X, ε) ∼ ε−dB(X) (Chapter 3). This dimension has mainly found appli-
cation in the field of dynamical systems, see for example Falconer (1990),
Eden et al. (1994), C. Robinson (1995), and Robinson (2001).
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2 Introduction

(iv) The Assouad dimension dA(X), a ‘uniform localised’ version of the box-
counting dimension: if B(x, ρ) denotes the ball of radius ρ centred at
x ∈ X, then N (X ∩ B(x, ρ), r) ∼ (ρ/r)dA(X) for every x ∈ X and every
0 < r < ρ (Chapter 9). This definition appears unfamiliar outside the
area of metric spaces and most results are confined to research papers
(e.g. Assouad (1983), Luukkainen (1998), Olson (2002); but see also
Heinonen (2001, 2003)).

For any compact metric space (X, �) we will see that

dim(X) ≤ dH(X) ≤ dB(X) ≤ dA(X),

and there are examples showing that each of these inequalities can be strict. We
will check that each definition satisfies the natural properties of a dimension:
monotonicity (X ⊆ Y implies that d(X) ≤ d(Y )); stability under finite unions
(d(X ∪ Y ) = max(d(X), d(Y ))); and the dimension of R

n is n (a consistent
way to interpret this so that it makes sense for all the definitions above is that
d(K) = n if K is a compact subset of R

n that contains an open set). We will
also consider how each definition behaves for product sets.

Our main concern will be with the embedding results that are available
for each class of ‘finite-dimensional’ set. The embedding result for sets with
finite covering dimension, due to Menger (1926) and Nöbeling (1931) (given
as Theorem 1.12 here), is in a class of its own. The result guarantees that when
dim(X) ≤ d, a generic set of continuous maps from a compact metric space
(X, �) into R

2d+1 are embeddings.
The results for sets with finite Hausdorff, upper box-counting, and Assouad

dimension are of a different cast. They are expressed in terms of ‘prevalence’
(a version of ‘almost every’ that is applicable to subsets of infinite-dimensional
spaces, introduced independently by Christensen (1973) and Hunt, Sauer, &
Yorke (1992), and the subject of Chapter 5), and treat compact subsets of
Hilbert and Banach spaces. Using techniques introduced by Hunt & Kaloshin
(1999), we show that a ‘prevalent’ set of continuous linear maps L : B → R

k

provide embeddings of X when d(X − X) < k, where

X − X = {x1 − x2 : x1, x2 ∈ X}

and d is one of the above three dimensions (see Figure 1). Note that if one
wishes to show that a linear map provides an embedding, i.e. that Lx = Ly

implies that x = y, this is equivalent to showing that Lz = 0 implies that z = 0
for z ∈ X − X. This is why the natural condition for such results is one on the
‘difference’ set X − X; but while dB(X − X) ≤ 2dB(X), there are examples of
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Introduction 3

Figure 1 The linear map L : B → R
k embeds X into R

k . The inverse mapping
L−1 provides a parametrisation of X using k parameters.

sets for which dH(X) = 0 but dH(X − X) = ∞ (and similarly for the Assouad
dimension).

Where the embedding results for these three dimensions differ from one
another is in the smoothness of the parametrisation of X provided by L−1. In the
Hausdorff case this inverse can only be guaranteed to be continuous (Chapter 6);
in the upper box-counting case it will be Hölder (Chapter 8); and in the Assouad
case it will be Lipschitz to within logarithmic corrections (Chapter 9). Simple
examples of orthogonal sequences in �2 (or related examples in c0, the space of
sequences that tend to zero) show that the results we give cannot be improved
when the embedding map L is linear.

Chapter 4 presents an embedding result for subsets X of R
N with box-

counting dimension d < (N − 1)/2. The ideas here form the basis of the results
for subsets of Hilbert and Banach spaces that follow, and justify the development
of the theory of prevalence in Chapter 5 and the definition of various ‘thickness
exponents’ (the thickness exponent itself, the Lipschitz deviation, and the dual
thickness) in Chapter 7.

Part II discusses the attractors that arise in certain infinite-dimensional
dynamical systems, and the implications of the results of Part I for this class of
finite-dimensional sets. In particular, the embedding result for sets with finite
box-counting dimension is used toward a proof of an infinite-dimensional ver-
sion of the Takens time-delay embedding theorem (Chapter 14) and it is shown
that a finite-dimensional set of real analytic functions can be parametrised using
a finite number of point values (Chapter 15).

Chapter 10 gives a very cursory summary of some elements of the theory
of Sobolev spaces and fractional power spaces of linear operators, which are
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4 Introduction

required in order to discuss the applications to partial differential equations.
It is shown how the solutions of an abstract semilinear parabolic equation,
and of the two-dimensional Navier–Stokes equations, can be used to generate
an infinite-dimensional dynamical system whose evolution is described by a
nonlinear semigroup.

The global attractor of such a nonlinear semigroup is a compact invariant
set that attracts all bounded subsets of the phase space. A sharp condition
guaranteeing the existence this global attractor is given in Chapter 11, and it is
shown that such an object exists for the semilinear parabolic equation and the
Navier–Stokes equations that were treated in the previous chapter.

Chapter 12 provides a method for bounding the upper box-counting dimen-
sion of attractors in Banach spaces. While there are powerful techniques avail-
able for attractors in Hilbert spaces, these are already presented in a number
of other texts, and outlining the more general Banach space technique is more
in keeping with the overall approach of this book (the Hilbert space method is
covered here in an extended series of exercises). In particular, we show that any
attractor of the abstract semilinear parabolic equation introduced in Chapter 10
will be finite-dimensional.

Before proving the final two ‘concrete’ embedding theorems in Chapters 14
and 15, Chapter 13 provides two results that guarantee that an attractor has zero
‘thickness’: we show first that if the attractor consists of smooth functions then
its thickness exponent is zero, and then that the attractors of a wide variety of
models (which can be written in the abstract semilinear parabolic form) have
zero Lipschitz deviation. This, in part, answers a conjecture of Ott, Hunt, &
Kaloshin (2006).

Most of the chapters end with a number of exercises. Many of these carry
forward portions of the argument that would break the flow of the main text, or
discuss related approaches. Full solutions of the exercises are given at the end
of the book.

All Hilbert and Banach spaces are real, throughout.
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PART I

Finite-dimensional sets
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1

Lebesgue covering dimension

There are a number of definitions of dimension that are invariant under home-
omorphisms, i.e. that are topological invariants – in particular, the large and
small inductive dimensions, and the Lebesgue covering dimension. Although
different a priori, the large inductive dimension and the Lebesgue covering
dimension are equal in any metric space (Katětov, 1952; Morita, 1954; Chapter
4 of Engelking, 1978), and all three definitions coincide for separable metric
spaces (Proposition III.5 A and Theorem V.8 in Hurewicz & Wallman (1941)).
A beautiful exposition of the theory of ‘topological dimension’ is given in the
classic text by Hurewicz & Wallman (1941), which treats separable spaces
throughout and makes much capital out of the equivalence of these definitions.
Chapter 1 of Engelking (1978) recapitulates these results, while the rest of his
book discusses dimension theory in more general spaces in some detail.

This chapter concentrates on one of these definitions, the Lebesgue covering
dimension, which we will denote by dim(X), and refer to simply as the covering
dimension. Among the three definitions mentioned above, it is the covering
dimension that is most suitable for proving an embedding result: we will show
in Theorem 1.12, the central result of this chapter, that if dim(X) ≤ n then a
generic set of continuous maps from X into R

2n+1 are homeomorphisms, i.e.
provide an embedding of X into R

2n+1.
There is, unsurprisingly, a topological flavour to the arguments involved

here, and consequently they are very different from those in the rest of this
book. However, any survey of embedding results for finite-dimensional sets
would be incomplete without including the ‘fundamental’ embedding theorem
that is available for sets with finite covering dimension.

7

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89805-8 - Dimensions, Embeddings, and Attractors
James C. Robinson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521898058


8 Lebesgue covering dimension

1.1 Covering dimension

Let (X, �) be a metric space, and A a subset1 of X. A covering of A ⊆ X is a
finite collection {Uj }rj=1 of open subsets of X such that

A ⊆
r⋃

j=1

Uj .

The order of a covering is the largest integer n such that there are n + 1
members of the covering that have a nonempty intersection. A covering β is a
refinement of a covering α if every member of β is contained in some member
of α.

Definition 1.1 A set A ⊆ X has dim(A) ≤ n if every covering has a refine-
ment of order ≤ n. A set A has dim(A) = n if dim(A) ≤ n but it is not true that
dim(A) ≤ n − 1.

Clearly dim is a topological invariant. We now prove some elementary
properties of the covering dimension, following Munkres (2000) and Edgar
(2008).

Proposition 1.2 Let B ⊆ A ⊆ X, with B closed. If dim(A) = n then
dim(B) ≤ n.

Proof Let α be a covering of B by open subsets {Uj } of X. Cover A by the
sets {Uj }, along with the open set X \ B. Let β be a refinement of this covering
that has order at most n. Then the collection

β ′ := {U ∈ β : U ∩ B �= ∅}
is a refinement of α that covers B and has order at most n. �

The assumption that B is closed makes the proof significantly simpler, but
the result remains true for an arbitrary subset of A, see Theorem 3.2.13 in
Edgar (2008), or Theorem III.1 in Hurewicz & Wallman (1941). However, the
following ‘sum theorem’ is not true unless one of the spaces is closed: in fact,
dim(X) = n if and only if X can be written as the union of n + 1 subsets all
of which have dimension zero (see Theorem III.3 in Hurewicz & Wallman
(1941)).

1 In the context of metric spaces it is somewhat artificial to make the definition in this form, since
(A, �) is a metric space in its own right. But our main focus in what follows will be on subsets
of Hilbert and Banach spaces, where the underlying linear structure of the ambient space will be
significant.
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1.1 Covering dimension 9

Proposition 1.3 Let X = X1 ∪ X2, where X1 and X2 are closed subspaces
of X with dim(X1) ≤ n and dim(X2) ≤ n. Then dim(X) ≤ n.

Of course, it follows that if X = X1 ∪ · · · ∪ Xk , each Xj is closed and
dim(Xj ) ≤ n for every j = 1, . . . , k then dim(X) ≤ n. In fact one can extend
this to countable unions of closed sets, see Theorem III.2 in Hurewicz &
Wallman (1941) (and Theorem 3.2.11 in Edgar (2008) for the case n = 1).

Proof We will say that an open covering α of X has order at most n at points
of Y if every point in Y lies in no more than n + 1 elements of α.

First we show that any open covering α of X has a refinement that has order
at most n at points of X1. Any such covering of X provides a covering of X1,
which has a refinement β ′ that has order at most n. For every V ∈ β ′, there
exists an element UV ∈ α such that V ⊂ UV . Then

β = {UV : V ∈ β ′} ∪ {U \ X1 : U ∈ α}
is the required refinement of α. We can repeat this argument starting with the
covering β of X, and obtain a covering γ that refines β and has order at most
n at points of X2.

We now define a further covering of X, which will turn out to be a refinement
of α of order at most n. As a first step in our construction, define a map
f : γ → β by choosing, for each G ∈ γ , an f (G) ∈ β such that G ⊂ f (G)
(this is possible since γ refines β). Now for each B ∈ β, let

d(B) = {G ∈ γ : f (G) = B},
and let δ be the union of all the sets d(B) (over B ∈ β).

Now, δ is a refinement of α, since d(B) ⊂ B for every B ∈ β, and β is a
refinement of α. Also, δ still covers X since γ covers X and every G ∈ γ is
contained in some B ∈ β (as γ refines β). All that remains is to show that δ

has order at most n.
Suppose that x ∈ X with x ∈ d(B1) ∩ · · · ∩ d(Bk), with all the d(Bk) distinct

(thus B1, . . . , Bk are distinct). It follows that for each j = 1, . . . , k, x ∈ Gj

where f (Gj ) = Bj ; since B1, . . . , Bk are distinct, so are G1, . . . , Gk . Thus

x ∈ G1 ∩ · · · ∩ Gk ⊂ d(B1) ∩ · · · ∩ d(Bk) ⊂ B1 ∩ · · · ∩ Bk.

If x ∈ X1 then k ≤ n + 1 because β has order at most n at points of X1; and if
x ∈ X2 then k ≤ n + 1 because γ has order at most n at points of X2. �

We do not prove a result on the covering dimension of products here,
although it is the case that dim(X × Y ) ≤ dim(X) + dim(Y ) (Theorem III.4 in
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10 Lebesgue covering dimension

Hurewicz & Wallman (1941)): this can be proved as a corollary of a characteri-
sation of the covering dimension in terms of the upper box-counting dimension,
see Exercise 3.4.

1.2 The covering dimension of In

It is by no means trivial to show that the covering dimension of R
n is n. Note

that it suffices to show that dim(In) = n, where In = [− 1
2 , 1

2 ]n denotes the unit
cube in R

n, since as remarked after Proposition 1.3, the covering dimension is
in fact stable under countable unions of closed sets.

We refer to Theorem 50.6 in Munkres (2000) for a direct proof of the upper
bound on dim(In) (see also Exercise 1.2 for compact subsets of R

2). One can
also deduce the upper bound from the general fact that the covering dimension is
bounded by the Hausdorff dimension (Theorem 2.11); it is very simple to show
that the Hausdorff dimension of a subset of R

n is bounded by n (Proposition
2.8(iii)).

While the proof of the upper bound is more notationally awkward than tech-
nically difficult, the proof of the lower bound involves the powerful Brouwer
Fixed Point Theorem (see IV (C) of Hurewicz & Wallman (1941) for a proof).

Theorem 1.4 Any continuous map f : In → In has a fixed point, i.e. there
exists an x0 ∈ In such that f (x0) = x0.

We give a proof of the lower bound (essentially the ‘Lebesgue Covering
Theorem’) adapted from Hurewicz & Wallman’s book, for the two-dimensional
unit cube I2 = [− 1

2 , 1
2 ]2. The general result (for In) is not significantly more

involved, but the argument can be somewhat simplified in this case without
losing its essential flavour. (An alternative proof of a similar two-dimensional
result is given as Theorem 3.3.4 in Edgar (2008).) Before the proof we introduce
some notation.

Given a set U ⊂ (X, �) we define the diameter of U , written |U |, as

|U | = diam(U ) = sup
u1,u2∈U

�(u1, u2).

(We only use the notation diam(U ) when |U | would be ambiguous.) The mesh
size of a covering of A is the largest of the diameters of the elements of the
covering.

For two sets A,B ⊂ X we write

dist(A,B) = sup
a∈A

inf
b∈B

�(a, b)
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1.2 The covering dimension of In 11

for the Hausdorff semidistance between A and B. Note that if B is closed then
dist(A,B) = 0 implies that A ⊆ B.

Theorem 1.5 Let I2 = [− 1
2 , 1

2 ]2 ⊂ R
2. Then dim(I2) ≥ 2.

Proof We want to show that any covering α of I2 with sufficiently small mesh
size contains at least three sets with nonempty intersection. To this end, take
a covering α with mesh size < 1 so that no element of the covering contains
points of opposite faces.

The first step is to construct a refinement α̃ of α consisting of closed, rather
than open, sets. To do this, observe that every x ∈ I2 is contained in some
Ux ∈ α, and we can find an open set Vx such that x ∈ Vx ⊂ V̄x ⊂ Ux . Since I2

is compact and {Vx : x ∈ I2} is an open cover of I2, there is a finite subcover
{Vxj

}. We take α̃ to be the collection of all the closed sets {V̄xj
}. By construction

this is a refinement of α consisting of closed sets.
We now show that α̃ contains at least three sets with nonempty intersection,

from which it is immediate (since α̃ is a refinement of α) that α contains at
least three sets with nonempty intersection.

Let �1 denote the side of I2 with x = − 1
2 , �′

1 the side with x = 1
2 , �2 the

side with y = − 1
2 , and �′

2 the side with y = 1
2 . Let L1 denote the union of

those elements of α̃ that intersect �1; L2 the union of those elements of α̃ that
are not in L1 and intersect �2; and let L3 be the union of all the other elements
of α̃ (those that intersect neither �1 nor �2). See Figure 1.1(a).

If we define K1 = L1 ∩ L3 then K1 separates �1 and �′
1 in I2, i.e. there exist

open sets U1 and U ′
1 such

I2 \ K1 = U1 ∪ U ′
1, U1 ∩ U ′

1 = ∅
and �1 ⊂ U1, �′

1 ⊂ U ′
1. The set K ′

2 = L1 ∩ L2 ∩ L3 separates �2 ∩ K1 from
�′

2 ∩ K1 in K1. One can then find a new closed set K2, with K2 ∩ K1 ⊆ K ′
2,

that separates �2 and �′
2 in I2, i.e. such that there exist open sets U2 and U ′

2

such that

I2 \ K2 = U2 ∪ U ′
2, U2 ∩ U ′

2 = ∅
and �2 ⊂ U2, �′

2 ⊂ U ′
2. These constructions are illustrated in Figure 1.1(b). (If

the ‘proof by diagram’ of this last step is unconvincing, see IV.3 A) in Hurewicz
& Wallman (1941), or Exercise 1.3.)

Now for each x ∈ I2, let v(x) be the 2-vector with components

vi(x) =

⎧⎪⎪⎨
⎪⎪⎩

dist(x,Ki) x ∈ Ui,

0 x ∈ Ki,

−dist(x,Ki) x ∈ U ′
i ,
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