
1 Introduction

The structures discussed in this book are assemblages of ele-

ments (e.g. beams, columns, struts, ties) that form a construc-

tion of some practical use. For example, a light steel gantry

may be needed to support a cable to power electric trains;

or simple portal frames, steel or concrete, may house a fac-

tory; or the elements may be combined into a framework for

a multi-storey building. A theory of structures is necessary to

ensure that the design of any particular construction will be

satisfactory when built.

The designer decides on the general form of a structure –

for example, using girders working in bending for a small-

span bridge, rather than a lattice truss with members work-

ing in tension or compression (alternative forms may be

examined simultaneously to achieve a best design). Design

requirements (e.g. specified imposed loads, permitted maxi-

mum deflexions) are stated, and the designer’s task is to satisfy

those requirements. The design process falls logically into two

stages: dimensions are assigned to the members of the chosen

form, and the theory of structures is then used to ensure that
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2 Introduction

the members are comfortable, and that the overall behaviour

of the structure meets the criteria. This process, in general, is

circular; the structural analysis cannot be made until the sizes

of the members have been chosen, but those sizes depend on

the results of the structural analysis. In some cases it may be

possible to achieve a direct design without this circular pro-

cess of trial and error (and, certainly, computer programs may

be written to achieve rapidly convergent designs). This book

is concerned with the analysis of structural forms to ensure

that design criteria are met.

The three major structural criteria are strength, stiffness

and stability. Successive chapters are devoted to these topics.

Individual members must certainly be strong enough to carry

the loads they are designed to bear, but the overall strength of

a complex structure may well be determined by the interaction

of those members. The strength of structures is examined in

Chapter 2.

Similarly, to be serviceable a structure must have dis-

placements with acceptable limits – it must be stiff enough

under the prescribed loading so that deflexions are not devel-

oped which might interfere with its design function (e.g. over-

head rails in a factory building must remain sufficiently rigid

to ensure that a gantry crane can operate without difficulty; an

electric cable must be reachable by the pantogram of a train).

Such deflexions are almost always elastic, and their calculation

is explained in Chapter 3, and continued in Chapter 4.

Finally, the structure must remain stable. A familiar form

of instability may be observed in the buckling of columns, but

other forms are possible, and they include the instability of
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Figure 1.1. Load/extension curve for a ductile material.

the structure overall. Buckling of an individual steel or con-

crete member may be sudden, and could prove disastrous for

the structure as a whole, although in certain types of construc-

tion (for example, plates and thin shells, which are outside

the scope of this book), stable buckling can occur. Stability is

studied in Chapter 5.

1.1 Structural assumptions

A first requirement of a material that is structurally useful

is that it should be ductile. That is, steel, reinforced concrete

(preferably under-reinforced), aluminium alloys, and perhaps

wrought iron are acceptable, but cast iron and glass are not;

they will shatter if incorporated as load-bearing members in a

practical structure. Figure 1.1 shows schematically the results

of a tensile test on a prismatic mild steel bar of a grade typi-

cally used in structural work. As the tensile load on the spec-

imen is increased the resulting extension is at first elastic and

proportional to the load (Hooke’s Law), and is recoverable.
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4 Introduction

However, when the yield stress of the steel is reached the spec-

imen extends at a more or less constant load, and behaves in

a plastic way. If the test is interrupted at this stage, and the

load is removed, the extension is not fully recoverable, and

the unloading from a point such as P is elastic. The transi-

tion from elastic to plastic behaviour in such a test may be

sharp, and points A and B may almost coincide. However,

the important property of the schematic sketch of fig. 1.1 is

that possible plastic extensions, for mild steel, are many times

the extension at first yield (more than a factor of 10 before

indeed the load starts to increase with the onset of strain

hardening).

Such a mild steel bar is used in the example of a truss in

Chapter 2, but the bar could equally be made from aluminium

alloy. In that case the load/extension characteristic differs from

that shown in fig. 1.1 in that portion BP of the curve would

rise gently instead of being virtually horizontal. However, a

design based on the load at point B of the curve would be

safe for the alloy construction, and in both cases, steel and

aluminium alloy, the plastic region is sufficiently large that

extensions may be assumed to be unlimited, and to take place

at constant load (provided there is no danger of instability; see

below for the third structural assumption). The load/extension

characteristic is in fact idealized as shown in fig. 1.2.

If the mild steel member is used not in tension, but in

bending in the form of a beam in a structural frame, then fig. 1.1

represents – again schematically, but with some accuracy – the

moment/curvature characteristic of the member. As before,

the initial response is linear and elastic, but at yield large
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Figure 1.2. Idealised load/extension curve.

increases in curvature can occur in the beam. The yield zones

are localized at plastic hinges; large rotations of the hinges can

occur at a constant value of bending moment, defined as the

full plastic moment of the beam. This value corresponds to the

plateau BP in fig. 1.1. As will be seen, the formation of a single

(or indeed more than one) plastic hinge does not necessarily

imply that the structure has attained a limiting strength; that

limit is reached when a sufficient number of hinges form so

that unacceptably large deformations can occur.

A second structural assumption is concerned with the

magnitude of the deformations. It is possible to construct

analyses which allow for finite displacements, but the straight-

forward theory of structures assumes that working deforma-

tions (that is, displacements before the limiting strength is

attained) are small compared with the overall dimensions of

the structure. By small it is implied that changes in the over-

all geometry of the structure under load are negligible; thus

the angles between the bars of a truss framework stay virtu-

ally unchanged, so that equilibrium equations involving these
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6 Introduction

angles, and written for the undeformed structure, remain valid

for the deformed state.

Finally, a third major assumption concerns the stability

of structural members. This question is explored later but,

essentially, care must be taken if a member is used whose load/

deflexion characteristic does not exhibit the ductile plateau of

the schematic fig. 1.1, but instead involves a decrease of load

with increasing deformation.

1.2 Structural equations

The theory of structures is a branch of solid mechanics which

deals with slightly deformable bodies, and there are only three

types of basic equation which may be written to perform a

structural analysis. The first set of equations expresses the

static equilibrium of a structure – that is, internal structural

resultants (e.g. bar forces in a truss, bending moments in a

beam or frame, and so on) must be in equilibrium with the

external loads acting on the structure. The familiar equations

of statics – resolving forces, taking moments – are used to

ensure this equilibrium. As will be seen in the next chapter,

these basic equations may be used to determine the strength of

a structure constructed from materials whose limiting strength

(e.g. a yield stress or value of full plastic moment) is known.

The other two structural criteria – stiffness and stability –

require the use of the other two sets of master structural equa-

tions. Straightforwardly, if elastic deflexions are to be calcu-

lated, then the elastic properties of the material must enter

the analysis. For the trusses and beams considered in this book
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1.2 Structural equations 7

only the value of Young’s modulus is needed. Once the value is

specified for a given structural member, that member’s elastic

deformation can be calculated in terms of the applied internal

forces (i.e. tension, compression, bending moment).

Problems involving shear deformation (which are not

considered here) require the value of a second (independent)

material constant, the shear modulus; this modulus is needed,

for example, if the effects of twisting of a member (e.g. a

steel hollow-box section) are to be investigated. (There are,

in theory, 21 elastic constants for materials which possess no

isotropy or other elastic symmetry. Wood, for example, has

three mutually perpendicular planes of symmetry, two along

the grain and one at right angles. In this case, the number of

elastic constants required in theory to specify elastic behaviour

is reduced to 9. However, for a reasonably homogeneous and

isotropic material like steel or aluminium alloy the two con-

stants suffice.)

Finally, the elastic deformations must be such that the

members still fit together when the structure is loaded, and

the structure as a whole must obey whatever boundary condi-

tions may be specified (e.g. a beam rests on a given number of

supports, a frame has its footings rigidly attached to founda-

tions, and so on). Considerations such as these are expressed

in the third set of master equations, the so-called compatibility

conditions.
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2 Strength

2.1 Trussed frameworks

The three equal bars shown in fig. 2.1 are supposed to be rigid

and infinitely strong; they are pinned together at B and C with

frictionless joints, and similar pins at A and D connect the

assemblage to a rigid foundation. Evidently the figure does

not represent a (two-dimensional) structure – it is a mecha-

nism (a four-bar chain, counting the ground AD as one of the

bars) incapable of carrying load. The addition of a diagonal

member AC enables load to be applied – for example, the

horizontal force W at joint C, fig. 2.2. The statical analysis of

the truss is shown in fig. 2.3, in which the bar forces shown

have been obtained by resolving horizontally and vertically

at the frictionless joints. At B the two members meeting at

right angles must each carry zero load, while the resolution

of forces at joint C shows that the added member AC carries

a tension W
√

2, while the (rigid) member CD is subject to a

compression W. (In accordance with the assumption of small
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2.1 Trussed frameworks 9
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Figure 2.1. Mechanism of
pinned bars.

deformations, the 90- and 45-degree angles in fig. 2.3 remain

unchanged for the purpose of the resolution of forces.)

In contrast to the original three rigid members, the diag-

onal AC is a structural element which elongates slightly under

the action of its tensile load. If the load/extension character-

istic of member AC is known (that is, it has a known cross-

sectional area and elastic modulus), then its extension can be

calculated in terms of the force W, and the deflexion of point

C may be determined.

A

B C

D

W

Figure 2.2. Structure
capable of carrying load.
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10 Strength
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O 2W
√ Figure 2.3. Bar forces due

to load W.

The problem of the stiffness of the truss – that, is the

determination of the deflexion of joint C – is discussed in

Chapter 3. The present objective is to calculate the strength of

the simple structure shown in fig. 2.2. If the member AC can

sustain a maximum load of value T, then clearly the greatest

value of W is T/
√

2. At this load, indefinite ductile extension of

bar AC occurs in accordance with the idealized characteristic

of fig. 1.2, and deflexions of the structure occur which are no

longer small – a mechanism of collapse (the four-bar chain)

has developed.

This analysis can hardly be dignified by the label Theory

of Structures. The structural problem proper is illustrated in

fig. 2.4, in which a second structural member BD has been

added to the truss; as before, all joints are supposed to be

freely pinned, and the two diagonals have no connexion where

they cross. Under the action of the applied load W tensions

P1 and P2 are developed in the two diagonal members, as

shown. Resolution of forces at joint B leads to the marked

values of tension in bars BC and BA. Tensile forces are

denoted positive, so that the tension −P2
√

2 marked for bar
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