Index

Abel, F.A., 4
Abouseif, G.E., 101
acceleration processes, 311. See also flame acceleration
acetylene–oxygen–diluent reactions, 122, 158, 213, 289–290
acoustic absorption
attenuating materials, 227
tube walls, 227–235, 230, 232, 290
acoustic theory, 176–177, 178
acoustic vibrations/waves
chemical reactions length scale and, 241
as decay product, 301, 315–316
instability and, 12
oscillations, 271
spinning detonations and, 11, 152
activation energy
argon dilution, 123–126, 196–197, 212, 231, 335–336
for chain reactions, 88–89
detonation velocity and, 115–116, 116
global, 127
induction reaction and, 101, 126–127
infinite, 102
Newtonian limit and, 102–103
one-dimensional instability and, 108–109
oscillation modes, 111–112, 112, 113, 114
reinitiation and, 115
shock pressure as function of time, 109, 110
temperature sensitivity and, 131
transverse waves and, 134
ZND structure and, 77–78
adiabatic heating/compression, 3
Antolik, K., 158
area divergence, 90, 91, 210, 331
argon dilution, 123–126, 127, 196–197, 212, 231, 335–336
Arrhenius models, 100, 112, 115
Arrhenius rate law
activation energy and, 77, 119–120
for blast initiation simulation, 314, 324
cellular detonations and, 131
heat release profile, 315
pathological detonations and, 85–86
reaction profiles and, 127
two-dimensional unstable detonations and, 130
for ZND structure analysis, 75–76
Arrhenius reactions, 115, 119
aspect ratio, 339
asymptotic analysis, 101–102, 103–105
asymptotic decay, 71, 316
asymptotic limits, 105–106
auto-ignition, 257, 277, 294
Bach, G.G., 299, 351–357
Bandyopadhyay, P., 160
baroclinic vorticity generation mechanism, 136–137, 273
Bartenev, A.M., 19
basic equations, 27–29, 54–57
Bauwens, L., 130
Becker, R., research on
chemical reactions, initiation of, 74
CJ solutions, 35
conservation equations, 26
detonation structure, 9, 75
minimum-velocity solution, 39
Belles, F., 236
Belousov-Zhabotinskii reaction, 112
Benedick, W., 14, 339
Berets, D.J., 298, 339–340, 344
Berthelot, M., 4, 4, 73
bifurcation of oscillation modes, 110–112, 112, 113
blast initiation
overview, 299–314
critical energy levels, 17
numerical simulation, 314–327
type of, 349–359

377
Index

378

blast waves
asymptotic decay of, 71
with blast energy, 350
decaying, 311, 351–357, 357
initiation of, 297
supercritical regime and, 303
theory of, 301
with velocities as a function of time, 308
Blythe, P.A., 102, 106
Bone, W.A., 11, 150, 151–152, 159, 179
Borghi diagram, 277
boundary conditions. See also tube diameter; tube walls
overview, 13–14
burning rate/velocity, 51, 255, 266
conservation equations and, 53
critical values for detonation, 349
deflagrations and, 46–48, 252
at detonation fronts, 154, 155
detonation velocities, 71
integration and, 108
intersecting shock waves and, 158
periodic conditions, 130–131
propagation speed and, 36
boundary conditions, influence of overview, 12–15, 204–205
acoustically absorbing walls, 227–235
closing remarks, 245–246
detonation limits, 235–245
rough-walled tubes, 214–227
velocity deficit, 205–214
Bourlioux, A., 101, 107
Braithway, J. L., 94, 95
breaks (shock waves), 157, 158, 162, 167, 170
Brehm, N., 290
Brochet, C., 205, 215–216
bronze, sintered, 227
bubbles of unburned mixture, 273, 277
Buckmaster, J.D., 101, 102, 103
burning rate
displacement flow and, 266
enhancing, 271
foamy structure and, 273
increasing, 267
pressure wave generation and, 260, 260–261
turbulence and, 277
burning velocity, 255, 258, 263–264
Campbell, C., research on detonation limits, 238–239
head rotation, 150
reaction region rotation, 155
spinning detonations, 11, 148
spiral paths, 159
CEA, 28
cell size, 194–199, 211, 334
cell spacing prediction, 103–105
cellular detonations asymmetrical, 314
cumulative perturbations, 130
description of, 174–175
frontal structure, 194
initiation of, 327–329
measured parameters in, 188
movie frames (photography), 174
stability of, 186
two-dimensional, 132, 133
velocity of, 188
wall reflection and, 131
ZND detonations vs., 138
cellular flame morphology, 265, 266
cellular instability, 128–139
cellular patterns
critical conditions, 18
intermediate states, 75
profiles, 123
quenching, 115
rate law/rate changes, 76, 77–78
reacting mixtures, 26
stability, 108–109, 118–128
temperature sensitivity and, 77, 199
velocity deficit and, 212
cellular reactions length scale, 241
cellular kinetic data, 195
chlorine, 298
choked regime, 223
Chu, B.T., 155–157, 157, 271, 273–274
cigarettes smoldering, 266
CJ criterion, 26, 38–42
CJ deflagration, 15, 284, 290–291
CJ detonations, 3, 53, 57–59, 71, 256
CJ plane, 75
CJ solutions, 32, 32–34, 33
Index

CJ theory, 5–7, 51, 79, 95–96, 115
CJ velocity, 85
Clavin, P., 101, 105, 106
coherent energy release, 361, 368
combustion
 intensity, 275
 products, 53, 71, 259, 298
 waves, 1, 225, 293–294
compression front, 56
compression pulse amplification, 361
compression solution, 59–60
compression waves (shocks), 2, 261, 293–294
computational domain, 131–132, 169
computer codes, 28
condensed explosives, xi
conical detonations, 310–311
conservation equations
 boundary conditions and, 53
 CJ criterion and, 51
 energy, 26, 27–28
 gasdynamic theory and, 50
 mass, 7, 26, 27–28, 47, 61
 momentum, 26, 27–28
 nonideal detonations, 89
 reaction zone flow, 60
 across shock waves, 6, 60
 upstream/downstream equilibrium states, 73
 wave states and, 42
conservation law, integrated form of, 83
constant volume explosion, 94–95
constant-velocity CJ detonations, 71
convective heat transfer, 91
Couette flow, 112
creases (shock waves), 157, 158, 162, 167, 170
Crighton, D.G., 102
critical conditions
 critical energy, 311, 314
 critical regimes, 300, 300–301, 301
for detonation onset, 298
explosion lengths, 327
flame speeds, 256–257
initiation energy, 326, 360
transmission/geometry, 332
values, 338
Crooker, A., 186–187, 188
crossover temperatures, 125, 314–315
Crussard, J.C., 6, 26, 38
cycloidal trajectory, 158
cylindrical detonations
 blast initiation for, 308, 309, 322, 323, 324
 CJ solutions to, 57–59
 condensed explosives and, 299
 converging, 191, 191
 critical initiation of, 313
 diverging, 189, 189–190
 illustrated, 189, 190
 nonideal detonations, 91
 supercritical initiation of, 311, 312
 supercritical transmission in, 332
 unconfined, 310
cylindrical flame, 275–276, 276
Dabora, E.K., 13, 213
Davis, W.C., 85, 99
deflagration-to-detonation transition (DDT)
decay characteristics of blast waves, 299
deflagrations
 description of, 252
deflagrations and, 29, 250–252, 280
 gasdynamic theory and, 46–50
 laminar, 301
 speed, 46
 strength, 38
 strong vs. weak, 31, 32
 waves, 1–2
deflagration-to-detonation transition (DDT)
 overview, 15–17, 250–252
closing remarks, 23–24, 293–294
DDT path, 256
deflagration onset, 277–286
flame acceleration mechanisms, 262–267
gasdynamics of, 252–258
transition criterion, 286–293, 289
transition distance, 214–215
transition phenomenon features, 258–262
Denet, B., 106
Denisov, Yu. N., 12, 159, 176, 178, 188
density
detonation front and, 69–70
interface, 273–274
ratio, 44, 47, 61
singularity-free solutions, 70
temperature and, 66
detonation
 boundary influence, 38
 cell size, 194–195, 198
 characteristics of, 192–194
 CJ criterion and, 39
 deflagrations and, 29, 250–252, 280
description, 2–3
 discovery of, 4–5
 drivers, 18
 final state, 73
in hydrogen–oxygen diluent systems, 239
minimum kernel, 358
outstanding problems, 19–21
pressure, 150
propagation, 194, 286
structure of, 7–10, 74
transition, 259, 279, 288, 337
transmission, 338
detonation bubbles
 explosion centers and, 311–312, 314, 331, 333
 illustrated, 261, 305–306, 306
 stability and, 338
detonation front
with chemical energy release, 150–151
curvature, 208
pressure distribution across, 176
product gas perturbation and, 178
reaction-zone length and, 334
stability, 11–12, 147–148
detonation onset
overview, 277–286
argon dilution, 123–126, 176, 196–197, 212, 231, 335–336
final phase, 278
flame brush origin, 282
flames and, 265, 268
induction distance, 227
location of, 251
modes of, 291, 291–292
precursor shock wave origin, 283, 284, 285
sequence of, 261, 281
detonation products, dynamics of
overview, 10–11, 53
basic equations, 54–57
CJ detonations, diverging, 57–59
closing remarks, 71
divergence in nonuniform medium, 65–71
piston motion, 59–65
detonation velocity
area divergence and, 210
CJ theory and, 76, 85
determining, 6
friction and, 94
frontal curvature and, 238
as function of activation energy, 115–116, 116
regularity of, 78–79
tube diameter and, 206
detonation waves, 31, 32, 216, 305
diagnostic techniques, 148
diaphragm (section separator), 18, 340–342
diffraction process, 334
diffuser effect, 265
diffusion waves, 1–2
digital image-processing technique, 196–197
Dionne, J.P., 89, 94, 95
direct initiation. See also blast initiation
overview, 17–19, 297–299
closing remarks, 368–369
other means, 339–349
SWACER mechanism, 360–368
tube diameter, 327–339
dispersion relationship, 104
displacement flow, 265–266, 267
displacement particle velocity, 47
Dixon, H., 73, 148–150
Döring, W., research on
conservation equations, 26
detonation structure model (ZND), 74
detonation structure research, 8, 9, 75
photo, 8
Dormal, M., 188
double-headed spin, 171
Dove, J., 163, 236
downstream conditions
algebraic expressions for, 42
equilibrium, 95–96
gasdynamic theory, 36–38
upstream state and, 42, 50
driver mixture, 342
driver section, 340–341
driving frequency, 156
driving mechanisms, 74
Duff, R., 12, 176–177, 178, 191–192
Duffey, G.H., 39, 159
Dupré, G., 119–120, 227–228, 290
Eder, A., 290
Edwards, H., 334
eigenfrequency, 156
eigenvalue detonation velocity, 8, 79, 83, 92, 95
eigenvalues, 100
electrical sparks, 302, 309
endothermic chain initiation steps, 88
energy, 17, 270–271, 299. See also activation energy
genome knocks, 18–19
entropy, 7, 35–36, 36, 38, 39, 46, 51
equivalence ratio, 198, 225
Erpenbeck, J.J., 99
ethylene–air mixtures, 241, 312, 313
Euler equations
for asymptotic analysis, 101
for blast initiation simulation, 314
boundary conditions, 155
compatibility, 130
hierarchial adaptive codes and, 107
numerical simulations and, 130, 139, 140
reaction zone structures and, 106
viscosity, 136–137
Evans, M., 226
exothermicity/exothermic chain reactions, 88–89, 124
expansion fan, 74
expansion waves, 1–2, 2–3, 293–294
explosions
cell size and, 194
centers, 261, 305, 311–312, 331, 333
charges, 299
in different geometries, 325
length of, 310
explosions within an explosion, 284
explosives, definition, xi
failure waves, 330–331
Falle, S.A.E.G., 113
Fay, J., research on
boundary conditions, 13, 236
direct initiation, 298
on early success of detonation theory, 147
flow divergence in reaction zones, 204, 208
Index

hydrodynamic stability analysis, 99
impediments to research, 148
specific acoustic impedance, 154–155
Feigenbaum numbers, 112
Fickett, W., 85, 99, 117
Finch, A.C., 11, 148, 155, 159
Finger, M., 191–192
first critical flame speed, 255, 256, 257
flame burning rate of, 260, 261
critical levels, 283
definition, 2
following precursor shock, 253
front, 102, 274–275
instability, 15–16
minimum kernel, 358
obstacles and, 287, 287
propagation, 267, 269, 274, 286
speed, 215, 262–263
velocities, 224
flame acceleration
eliminating, 297, 347
final phase, 278
mechanisms, 16, 262–277
stages of, 261, 263
subsequent to ignition, 262
flash photolysis, 298, 362
flow divergence,
208, 213–214, 231–232
boundary effects and, 236
detonation limits and, 237
velocity deficit and, 214
fluctuation, periodic, 148
fluctuation parameters, 135
fluid quantities, definition, 27
fluorine, 298
foamy structure, 273
foil interpretation, 196
forward thrust, 74, 250
four-headed spin, 171
four-step chain-branching reaction model, 130
Fraser, R.P., 11
free radical gradient, 298
French chalk (recording material), 159
frequency of unstable modes, 101
friction, 75, 92, 94. See also boundary conditions; tube walls
frontal structure, 157
frozen sound speed, 83
fuel-air mixtures, 213
fuel-oxygen mixtures, 250
galloping detonations, 244
Gamezo, V.N., 130, 131, 135, 138–139
gasdynamic theory
overview, 26
basic equations, 27–29
 CJ criterion/theory, 7, 38–42
conservation laws as basis, 10
of deflagration waves, 252–258
deflagrations, 46–50
downstream flow conditions, 36–38
entropy variation along Hugoniot Curves, 35–36
flame instability and, 265
origins of, 6
Rankine–Hugoniot relations, 42–46
Rayleigh line/Hugoniot curves, 29–32
tangency (CI) solutions, 32–34
ZND model and, 147
gaseous detonations, 213
Gavrikov, A.I., 130, 131, 135, 138–139
generalized CJ criterion, 71, 92
generalized normalmode stability, 100
generates, critical explosion lengths and, 327
Gorchkov, V., 100
Gordon, W., research on
detonation limits, 239, 240
detonation pressure, 150–151
direct initiation, 298
helical paths, photographs, 158
incident shock waves, 344
pressure ratios/combustion mixtures, 342
pressure–time profiles for initiator/test mixtures, 343
transmitted detonations/shocks, 340
gradient fields, 266
Greig, E.F., 149
Guénoche, H., 14, 89, 207, 215
harpin vortices, 160
harmonic functions, 155–156
He, L., 105, 115, 122
Head, M.R., 160
head, spinning, 149–150
heat of reaction, 108–109
heat release
asymptotic limits, 105
leading shock and, 86
Mach number and, 88, 88, 105
nonideal detonations, 89
overshoot, 88–89
rate changes, 155–156, 271
temperature profiles, 315, 315
in ZND model, 100
helical paths, 158
helical wave train, 156
high-frequency disturbances, 102–103
high-frequency spinning detonations, 170
high-speed deflagrations, 3
Howe, P., 120
Hugoniot, H., 6, 26
Hugoniot curves
deflagrations and, 47, 251, 252
downstream states and, 73, 251
entropy variation along, 35–36
equilibrium, 80
Index

Hugoniot curves (cont.)
 family of, 84, 89
 intermediate, 84
 intersection of, 8–9
 partially reacted, 40, 41, 75
 pathological detonations and, 7
 Rayleigh line and, 10, 29–32, 31, 39–40, 51, 78
 reaction completeness and, 85
 tangency, 32–33
 weak deflagrations and, 46
 weak detonations and, 3
hydrochloric acid, 88, 89
hydrodynamic stability analysis, 99
hydrodynamic thickness, 19–20, 351–352
hydrogen concentrations, 223
hydrogen–air mixtures, 239
hydrogen–oxygen diluent systems, 130, 239
ideal gas, 75–83
igniter, 299
ignition
 as combustion source, 1
 in DDT path, 259
 deflagration/detonation differences, 280
 detonation stability and, 17–18
 effecting, 3, 219
 energy requirements, 250
 instability of, 122
 as instantaneous detonation formation, 297
 in ZND model, 74
image converter photograph, 192
impedance mirror technique, 175
incident shock waves, 167, 199, 344
incident waves, 158, 172
induction
 distance, 260
 gradients, 19, 298, 364
 time, 77, 122, 301
 induction zone, 74, 120
inert-gas buffer, 340
initiation. See also blast initiation; direct initiation
 at critical energy values, 311
 direct, 17–19
 mechanisms of, 16
 via jet of combustion products, 346, 347
 via shock waves, 344
 internal combustion engines, 18–19, 286
Jones, H., 208
Jouguet, E., 5, 5–7, 26, 39
Kelvin–Helmholtz instability of the shear layers, 136–137
keystone pattern, 185
kinetic mechanisms, 79, 88–89, 126
Kirkwood, J.G., 208
Kistiakowsky, G., 26, 205
knock in internal combustion engines, 286
Knystautas, R., 19, 222, 334, 346
Kogarko, S.M., 241
Kompaneets, A.S., 219
Laffitte, P., 17, 214–215, 297, 327
Lagrangian McCormack flux-corrected transport code, 364
laminar flame, 266, 267, 274
laminar structure
 overview, 73–75
 closing remarks, 95–96
 nonideal detonations, 89–95
 pathological detonations, 83–89
 ZND structure for ideal gas, 75–83
Landau–Darrieus instability, 265
laser spark, 299
lateral expansion, 90–91
Le Chatelier, H., 4, 5, 73, 74
leading shock, 86
Lee, H.L., 99
Lee, J.H.S., research on
 activation energy, 115
 boundary conditions, 13
 DDT transition criterion, 286–287
 detonation kernel/limits, 237, 241, 358
 digital image-processing technique, 196–197
 failure mechanisms, 338
 flame acceleration, 16
 flash photolysis, 298
 flow divergence, 213
 hydrodynamic thickness, 19–20, 351–352
 initiation, 16, 18
 microwave Doppler interferometer, 243
 quenching (detonations), 119
 spherical detonations, 10
 SWACER mechanism, 285–286, 362
 transverse waves, 119–120
 tube diameter, 14, 333, 359
 unburned pockets of mixture, 122
 wall porosity, 227–228
Liang, Z., 130
light emission (from flame), 275, 275
line emission (from flame), 275, 275
linear stability, 99, 100, 119
local sound speed, 83
longitudinal wave reflection, 156
low-mode vibrations, 157
low-velocity detonation, 222–223
Ludford, G.S.S., 101, 103
luminosity of product gases, 260
Lyamin, G.A., 224
Lyapunov exponent, 113
Mach, E., 12, 159
Mach configuration, 163
Mach interaction system, 167–168
Mach number
 algebraic expressions for, 42
 behind leading shocks, 78
 equations for, 70
 friction, 94

heat release and, 88, 88, 105
reaction progress variable and, 117
types of, 80
Mach reflection, 230
Mach stems, 158, 170, 199
Makris, A., 224
Mallard, E., 4, 5, 73
Manson, N., research on
acoustic theory/waves, 152–154, 178
detonation history, 1
Fay’s results and, 155
instability, 12
limits, 242
quenching (detonations), 207
spinning detonations, 11
Manzhalei, V.I., 222
Markstein, G.H., 265, 274–275
Markstein–Richtmyer–Meshkov instability,
275
material properties, role of, xi
Matsui, H., 333, 359
maximum deflagration speed, 50, 290
maximum-deflagration-velocity, 32–33
Mazaheri, B.K., 115
mercury fulminate, 4, 17, 297
Meshkov, Y.Y., 274
methane concentration, 235
Meyer, J.W., 122, 280–281
microwave Doppler interferometer, 243
Mikelson, V.A., 6, 26
minimum-detonation-velocity solution, 32–33
minimum-entropy solution, 6, 7, 38
minimum-velocity solution
CJ criterion and, 6, 7, 38, 39, 51
Rayleigh line and, 9
Mitrofanov, V.V., 14, 17, 223, 334
Moen, I., 16, 240, 241
momentum, nonideal detonations, 89
Mooradian, A.J., 150–151, 298, 340, 343, 344
Morrison, R.B., 213
motion equations, 60
movie frames (photography), 174
multicomponent gas mixture, 81–83
multidimensional instabilities, 103–105
multiheaded detonations, 170–178, 172, 173, 177, 181
multimode detonations, 180
Murray, S.B., 13, 19, 174, 213, 240
Mylar diaphragm, 175
mylar diaphragm as record, 176
natural transverse eigenmodes, 157
Navier–Stokes equations, 130, 159
Nernst chain, 88
neutral induction zone, 315
Neves, J., 101, 102
Newtonian limit, 102–103
Ng, H.D., research on
argon dilution, 125–126
autoignition, 121–122
cell size, 197–198
stability, 121, 127
two-step reaction model, 120
nitrogen, 151–152, 216, 216–217, 242
nonideal detonations, 71, 89–95
non-reacting gases, 26
nonuniform energy release, 155
nonuniform gradient fields, 364
nonuniform medium, 65–71, 70
normal-mode linear analysis, 99–101
Norrish, R.G., 18
nozzle effect, 265
numerical noise, 130
numerical simulation
advantages/disadvantages, 98–99
of blast initiation, 314–327
chemistry, effect on stability, 119
direct, 106–108
obstacles
flame, effects on, 267–268
flame propagation past, 268, 268, 269
flame velocity and, 287, 287
geometry of, 268, 269, 270
OH fluorescence images, 185–186, 186
Olivier, H., 19
one-dimensional instability, 108–118
one-step Arrhenius kinetic model, 112
one-step reaction rate model, 108–118
open-shutter photography
of cylindrical detonations, 189, 190, 190, 191
of detonation in a thin channel, 184
of explosives, 158
of transverse wave trajectories, 183
Oppenheim, A.K., 16, 122
opposing shock waves, 128–129
Oran, E.S., 139
oscillation modes
amplitudes, 112, 114
argon dampening, 124
behavior of, 110–112, 113
past stability mode, 111
outstanding problems, 19–21
overdriven detonation. See also strong
detonations
asymptotic limits, 105
as breaks, 157–158
as decay product, 304
exothermicity and, 124
one-dimensional instability and, 108–109
stability of, 156
parameters, stability, 101–102
partially reacted Hugoniot curves, 40, 41, 75
particle velocity, 47, 61, 86, 155
pathological detonations
chemical reactions and, 40
CJ Theory and, 71
Hugoniot curves and, 7
laminar structure and, 83–89
particle velocity/sound speed, 86
progress variables and, 86
reaction completeness, 85
solutions to, 10
sonic condition and, 34
velocities of, 9
Pavlasek, T., 243
peak pressure, 367
perturbations
behavior of, 109–110
cellular detonations and, 135
expression coefficients and, 68
external, 135–136
on flame, 268
in linear stability analysis, 99–100
low- to moderate-frequency, 101
as research approach, 98
on ZND models, 108
PETN detonating cord, 310
photoinitiation, 348, 349
photolysis, 18
piezoelectric pressure gauges, 168
piezoelectric transducers, 150, 167
piston motion
behind diverging detonations, 59–65
rotation, 156
velocities, 57, 62, 63, 64
piston-supported detonations. See strong detonations
planar blast initiation, 312–313
planar detonations, 328, 329, 330, 340
planar flame front, 262, 265
planar laser imaging, 148, 185
platinum heat transfer gauges, 168
porous media, 224, 225, 226
Porter, G., 18
power density, 299
power pulse coherence, 122
power spectrum density, 113
precursor shock strength, 258
Presles, A.N., 175–176
pressure, 151
amplification, 361
behind expansion fans, 74
critical tube diameter as a function of, 334
ratio, 44, 45
distribution, 62, 63, 175, 176
as function of time for test mixtures, 343
histories, 167
profiles, 77, 319, 366
pulses, 360, 364–365, 367–368
vs. time, 270, 270
traces, 280
product gas perturbation, 178
progress variables, 86
propagation
forward thrust and, 74
obstacles and, 220
speed, 252
tube wall texture and, 214
velocity histories, 244
propane–oxygen–nitrogen, 216
pulsating detonations, 176, 178
Pusch, W., 235
Q-switched ruby laser, 299
quasi-detonations, 3, 14
quasi-one-dimensional theory, 204
quasi-steady detonation velocities, 215
quasi-steady shock–flame complex, 251
quenching (detonations), 119, 207
Quirk, J.J., 107, 119, 314
Radulescu, M.I., research on acetylene–oxygen–diluent reactions, 123–124
argon dilution, 125
autoignition, 121–122
cylindrical detonations, 310
detonation limits, 237
flow field analysis, 140
hydrodynamic thickness, 19–20
transverse waves, 119–120
wall porosity, 227–228
Ramamurthi, K., 358
Rankine, W.J., 6, 26
Rankine–Hugoniot equations, 7
Rankine–Hugoniot normal shock relations, 76
Rankine–Hugoniot relations across detonation waves, 45–46
conservation equations and, 70
density and pressure ratios and, 61
detonation front and, 69
gasdynamic theory and, 42–46, 50
rarefaction fans, 255, 330–331, 336
rate-of-work terms, 91
Ratner, B., 88
Rayleigh, J.W.S., 11, 21
Rayleigh instability, 15
Rayleigh line
deflagrations and, 46, 251
detonation solutions and, 251
Hugoniot curves and, 10, 29–32, 31, 35, 39–40, 51, 78
minimum-velocity solution and, 9
tangency, 32–33
upstream/downstream states, 73
Rayleigh–Bernard instability, 112
reacting blast wave theory, 301
reaction front
 deflagration propagation, 2
 shock and, 301, 302
 trajectories, 302, 307
 tube circumference, positions in, 169
reaction zone
 characteristics of, 277
 complexity of, 140
 of detonations, 3, 74
 flow divergence, 208
 length of, 334
 neutral induction zone and, 315
 one-dimensional flow model for, 207–208
 profiles, 122, 123
 rotation of, 155
 with shock wave coupling, 218
 structure/mechanisms, 85
 thickness, 204, 211
 turbulence in, 184
rear boundary conditions, 1–2
rectangular channels/tubes
 acoustic theory applied to, 154
 characteristics of, 163
 detonation in, 179, 182
 multihedral detonations, 181
 multimode detonations, 180
 reduced mechanisms (chemical reactions), 122, 124
 reflected shocks, 158, 167–168, 220–221, 221
 regularity condition, 78, 79
 reinitiation, 115, 336
 Renault, G., 207
 research opportunities, 19–21
 retonation waves, 16, 259, 268
 reverse integration strategy, 100
 Reynolds analogy, 91
 Reynolds number, 139, 266
 Richtmyer, R.D., 274
 Richtmyer–Meshkov instability, 15
 Riemann solution, 7, 10, 71
 round tubes, characteristics of, 163
 Rudinger, G., 274
 run-up distance, 260
schlieren movies, 261
schlieren photographs
 of detonation, 181, 184, 185, 221
 experimental modifications, 165–166
 illustrated, 166
 of photoinitiation, 18
 propagation waves/obstacles, 220
 soot records and, 180, 182
 of tube wall surfaces, 215–216, 216, 217, 218, 219
 Schott, G. L., 13, 158, 168
 Scorah, R.L., 35, 39
 second critical deflagration speed, 256
 second critical flame speed, 256, 257
 second law of thermodynamic, 40
Second World War, 8
 secondary shock velocity, 65
 see-through area, 226
 self-luminous photographs, 166
 self-propagating deflagrations, 3
 self-quenching phenomenon, 322
 Semenov–Frank–Kamenetsky ignition theory, 358
 Sharpe, G.J., 100, 113, 120
 Shechel’kin, K.I., research on
 breaks/creases, 157, 158
 detonation cell size, 194–195, 197
 particle velocity of gas, 158
 spherical detonation records, 191–192
 spinning detonations, 11–12, 157
 streak photographs, 163–164
 tube surfaces, 14, 215
 Shechel’kin spiral, 215
 Shepherd, J.E., 195, 196–197, 298
shock
 autoignition, 121–122
 deflagration complex, 3
 illustrated, 75
 radius/diameter, 310
 reaction front and, 301, 302
 reflections in rough tubes, 205
 trajectories, 302, 307, 307
 ZND structure and, 20
 shock front
 features, 167–168
 illustrated, 74
 trajectories, 302, 307, 307
 tube circumference, 169
 velocity, 134, 134, 135, 186–187
 shock pressure
 argon dilution, 126
 with different initiation energies, 324
 as function of distance, 316
 as function of time, 109, 110, 113, 115, 115
 instability, 319, 320, 321
 “shock wave amplification by coherent energy release.” See SWACER mechanism
shock waves
 decaying, 304–305
 instability, 199
 laminar flame and, 274
 nonlinear interaction of, 157
 with reaction zone coupling, 218
 reflected, 344, 345
 secondary, 59–60
 Short, M., research on
 crossover temperatures, 119
 heat release, 100, 106
 multidimensional instabilities, 104
 Newtonian limit, 102
 overdriven detonations, 105
 perturbations, low- to moderate-frequency, 101
 reaction models, 120, 314
 single-headed spinning detonations, 179, 180
single-headed spins, 131, 171
singularity-free solutions, 65–66, 67
Sivashinsky, G.I., 94, 95
slip lines, 158
smoke-foil records, 304
Soloukhin, R.I., 14, 17, 19, 122, 334
Sommers, J., 12, 159, 213
sonic conditions, 34, 38, 92, 116
sonic planes, 78, 86
sonic regimes, 223
sonic singularity, 93
soot deposition consistency, 196–197
soot records overview, 160–163
of cell size, 195
of detonation onset, 279
illustrated, 161, 162, 164, 172, 173, 175, 193
spherical detonations, 192
of transverse wave trajectories, 196
soot removal, 159–160
soot-foil technique, 158–159, 160
sound speed combustion waves and, 225
at detonation front, 61
equations for, 44
maximum deflagration speed and, 290
pathological detonations and, 86
source terms, 91
spark discharges/energy, 159, 261, 299
spark schlieren photographs, 192, 193
specific acoustic impedance, 155
specific heat ratio, 108–109
specific volume of gas, 265
spherical blasts, 299–300, 304, 308
spherical CJ detonations, 57–59
spherical detonations blast initiation for, 322, 327
cellular structures in, 191–192
direct initiation and, 297, 299
multiheaded, 193
spherical geometry, 91, 310, 332
spin frequencies, 12, 152, 154, 155, 170
spinning detonations overview, 148–152
eyear history of, 11–12
frontal structure, 157
high-frequency, 175
Manson–Taylor–Fay–Chu acoustic theory, 152–157
model of, 170
pressure histories and, 167
structure of, 11–12, 157–170
spinning head, 149–150
square channels, 179, 180
square-wave model, 101, 102
stability critical values and, 338
as function of Mach number, 121
of large-amplitude oscillations, 119
linear analysis, 99
parameters, 127, 321, 322
STANJAN, 28
Stewart, D.S., 99, 100, 101, 119
stoichiometric mixtures, 47, 123–124
stoichiometry, 333
streak photographs compensated, 173
cylindrical detonations, 190, 190
cellular structures in, 191–192
direct initiation and, 297, 299
multiheaded, 193
Manson–Taylor–Fay–Chu acoustic theory, 152–157
model of, 170
pressure histories and, 167
structure of, 11–12, 157–170
spinning head, 149–150
square channels, 179, 180
square-wave model, 101, 102
stability critical values and, 338
as function of Mach number, 121
of large-amplitude oscillations, 119
linear analysis, 99
parameters, 127, 321, 322
perturbations, 102
profiles, 77, 124, 127, 316, 317, 318
sensitivity, 77, 121–122, 199, 336
Teodorczyk, A., 119–120, 220, 227–228
test mixtures, 340, 342, 343
test section, 340–341
Teodorzen, T., 160
thermicity profiles, 127
thermodiffusion instability, 265
thermodynamic quantities, 27
thermodynamic states, 75, 80–81, 125
Thibault, P., 124, 364–365, 367–368
thin channels
detonation in, 184, 184, 185, 188, 329–330, 330
multiheaded detonations in, 182
third critical flame speed, 257
three-dimensional detonations, 129–130, 137–138, 185
three-reaction model, 314–315
three-step reaction models, 119, 125
Thrush, B.A., 18
Toong, T.Y., 101
transient flow field, 140
transition phenomenon features, 258–262
transition zone, 147, 148
transmitted detonations, 340
transverse acoustic modes, 152
transverse instability, 130
transverse vibrational frequency, 11
transverse vibrations, 194
transverse waves, 199
acoustic theory and, 176–177
across the leading front, 172
activation energy and, 134
amplification of, 292, 292–293
compression, 149
dampening of, 119–120, 205
as detonation decays, 132–133
detonation onset and, 291
growth rate of, 190
motion of, 128–129
of multiheaded detonations, 176
nonlinear interaction of, 170
oscillations of, 150
product gas vibrations and, 178
in rectangular tubes, 163
trajectories, 183, 196
vorticity and, 233
traveling pulse, stability of, 360
trifluoride, 298
triple-shock Mach intersections, 136–137, 158
Troshin, Ya. K., research on
cell size, 194–195, 197
detonation records, 163–164, 191–192
instability, 12, 159
multiheaded detonations, 176
pulsating detonations, 176, 178
shock front propagation, 188
Tsuge, S., 237
tube circumference, 169
tube diameter. See also boundary conditions
critical size, 17, 75, 157, 211, 235, 327–339, 335, 359
DDT transition criterion, 288
detonation failure and, 204
initial thermodynamic state, 235
methane–oxygen mixtures, 236
spark energy and, 299
spinning detonations and, 152
velocity and, 205, 206, 207, 211, 213
tube walls. See also boundary conditions
DDT transition and, 288, 289, 289–290
detonation characteristics and, 14, 75
friction, 91, 93
fuel–air mixtures and, 223
porosity, 228, 229, 231, 232, 234, 238
spiral paths on, 159
surface texture, 214–227, 251, 287
turbulence
burning rate, influence on, 277
initiation and, 346–347
mixing and, 18, 19, 140, 222
modeling, 20, 89
transport and, 137
two-dimensional boundary layer, 208
two-dimensional instability, 128–139, 129
two-step reaction model, 119
unburned pockets of mixture, 122, 135–136, 137, 184
unstable detonations: experimental observations
overview, 147–148
cell size/chemistry, 194–199
cellular structure in other geometries, 178–194
closing remarks, 99–200
Manson–Taylor–Fay–Chu acoustic theory, 152–157
multiheaded detonations, 170–178
spinning detonations, 148–152, 157–170
unstable detonations: numerical description
overview, 98–99
activation energy/Newtonian limit, 102–103
asymptotic analysis, 101–102, 103–105
asymptotic limits, 105–106
chemistry, effect on stability, 118–128
closing remarks, 139–140
linear analysis, 99–101
numerical simulation, 106–108
one-dimensional instability, 108–118
two-dimensional instability, 128–139
unstable mixtures, 330
unstable oscillatory modes, 102
unsupported detonation wave, 74
upstream states, 42, 50, 95–96
Urtiew, P.S., 16, 195
UV pulses/radiation, 18, 347–348
Varatharajan, B., 122, 237
Vasiliev, A.A., 19
velocity, 277, 341, 342
velocity deficit
overview, 205–214
chemical reactions and, 212
Shchelkin spiral and, 215
tube diameter and, 213
velocity-gradient field, 266
vibrational increases, 273
vibrational pressure, 155
Vieille, P., 4, 73–74
Voitsekhovskii, B.V., research on
instability, 12
mode suppression, 180–181
multiheaded detonations, 176
Schott’s results compared with, 168
spinning detonation structure, 163
streak photographs, 164–167
von Neumann, J., research on
chemical reactions, 75
conservation equations, 26
detonation structure, 8–9, 74, 245
generalized CJ criterion, 96
Hugoniot curves, family of, 84, 89
partially reacted states, 42
pathological detonations, 7
photo, 8
weak detonations, 39–40, 51
von Neumann pressure spike, 73–74
von Neumann state, 76, 78
vorticity, 199–200, 267
Voyevodsky, V.V., 122
Wadsworth, J., 18, 298
Wagner, H., 163, 235
weak deflagrations, 46, 48
weak detonations
characteristics of, 6
chemical reactions and, 75
CJ criterion and, 39–41
description of, 3
eliminating, 7
entropy and, 51
ruling out, 39–40
weak heat release, 105–106
Weber, M., 19
Westbrook, C.K., 195
wetted area, 207
Wheeler, R.N.V., 215
White, D.R., 12
Williams, F.A., 106, 122, 237
Wilson, E.B., 26
Wood, W., 208
Woodhead, D.W., 11, 148, 155
Yao, J., 101
Yoshikawa, N., 18
Zaidel, R.M., 101, 102
Zeldovich, Ya. B., research on
blast initiation, 327, 350
boundary conditions, 13, 236
CJ theory, 7, 39
combustion product dynamics, 53
conservation equations, 26
friction, 75, 93
hydrochloric acid, 88
ignition, 41, 219
initiation, 17
instability, 10, 12
knock in internal combustion engines, 286
limits, 241
particle velocity of gas, 158
photo, 8
structure, 8, 42, 74
temperature gradients, 18–19
tube diameters/walls, 207, 327
wave propagation, 204
Zeldovich–von Neumann–Doring (ZND). See at
ZND
zero initiation energy, 71
zig-zag detonations, 131, 164
ZND detonations
cellular detonations vs., 138
heat release (temperature) profile and, 315
with no losses, 211
stability of, 318
temperature profiles and, 124
ZND equations, 92, 93
ZND models
appropriate uses of, 237
description of, 9–10
limitations of, 147, 199
stability and, 246
ZND reaction-zone length (or thickness), 194–195, 198, 211, 336
ZND structure
hydrodynamic thickness and, 20
for ideal gas, 75–83
stability of, 156
steady state solutions, 95