Modern Electrodynamics

An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks.

Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity, and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject.

In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is available for instructors at www.cambridge.org/Zangwill.

Andrew Zangwill is a Professor of Physics at the Georgia Institute of Technology and a Fellow of the American Physical Society. He is the author of the popular monograph Physics at Surfaces (Cambridge University Press, 1988).
There are more things in heaven & earth connected with electromagnetism than are yet dream't of in philosophy.

Joseph Henry, letter to Lewis C. Beck (1827)

The search for reason ends at the shore of the known; on the immense expanse beyond it only the ineffable can glide.

Abraham Joshua Heschel, *Man is Not Alone* (1951)

Why repeat all this? Because there are new generations born every day. Because there are great ideas developed in the history of man, and these ideas do not last unless they are passed purposely and clearly from generation to generation.

Richard Feynman, *The Meaning of It All* (1963)
Contents

<table>
<thead>
<tr>
<th>Table of Applications</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 Mathematical Preliminaries

1.1 Introduction
1.2 Vectors
1.3 Derivatives
1.4 Integrals
1.5 Generalized Functions
1.6 Fourier Analysis
1.7 Orthogonal Transformations
1.8 Cartesian Tensors
1.9 The Helmholtz Theorem
1.10 Lagrange Multipliers

Sources, References, and Additional Reading

Problems

2 The Maxwell Equations

2.1 Introduction
2.2 The Maxwell Equations in Vacuum
2.3 Microscopic vs. Macroscopic
2.4 The Maxwell Equations in Matter
2.5 Quantum Limits and New Physics
2.6 SI Units
2.7 A Heuristic Derivation

Sources, References, and Additional Reading

Problems

3 Electrostatics

3.1 Introduction
3.2 Coulomb’s Law
3.3 The Scalar Potential
3.4 Gauss’ Law and Solid Angle
3.5 Electrostatic Potential Energy
3.6 Electrostatic Total Energy
3.7 The Electric Stress Tensor

Sources, References, and Additional Reading

Problems
CONTENTS

4 Electric Multipoles

4.1 Introduction 90
4.2 The Electric Dipole 92
4.3 Electric Dipole Layers 98
4.4 The Electric Quadrupole 102
4.5 Spherical Mathematics 106
4.6 Spherical and Azimuthal Multipoles 109
4.7 Primitive and Traceless Multipole Moments 116

Sources, References, and Additional Reading

Problems 119

5 Conducting Matter

5.1 Introduction 126
5.2 Electrostatic Induction 126
5.3 Screening and Shielding 133
5.4 Capacitance 134
5.5 The Energy of a System of Conductors 142
5.6 Forces on Conductors 143
5.7 Real Conductors 149

Sources, References, and Additional Reading

Problems 151

6 Dielectric Matter

6.1 Introduction 158
6.2 Polarization 158
6.3 The Field Produced by Polarized Matter 162
6.4 The Total Electric Field 165
6.5 Simple Dielectric Matter 167
6.6 The Physics of the Dielectric Constant 175
6.7 The Energy of Dielectric Matter 178
6.8 Forces on Dielectric Matter 184

Sources, References, and Additional Reading

Problems 191

7 Laplace’s Equation

7.1 Introduction 197
7.2 Potential Theory 198
7.3 Uniqueness 199
7.4 Separation of Variables 201
7.5 Cartesian Symmetry 203
7.6 Azimuthal Symmetry 209
7.7 Spherical Symmetry 212
7.8 Cylindrical Symmetry 215
7.9 Polar Coordinates 218
7.10 The Complex Potential 221
7.11 A Variational Principle 226

Sources, References, and Additional Reading

Problems 228
CONTENTS

8 Poisson’s Equation
- 8.1 Introduction 236
- 8.2 The Key Idea: Superposition 236
- 8.3 The Method of Images 237
- 8.4 The Green Function Method 250
- 8.5 The Dirichlet Green Function 252
- 8.6 The Complex Logarithm Potential 260
- 8.7 The Poisson-Boltzmann Equation 262

Sources, References, and Additional Reading 264
Problems 265

9 Steady Current
- 9.1 Introduction 272
- 9.2 Current in Vacuum 273
- 9.3 Current in Matter 275
- 9.4 Potential Theory for Ohmic Matter 276
- 9.5 Electrical Resistance 277
- 9.6 Joule Heating 280
- 9.7 Electromotive Force 282
- 9.8 Current Sources 287
- 9.9 Diffusion Current: Fick’s Law 291

Sources, References, and Additional Reading 293
Problems 294

10 Magnetostatics
- 10.1 Introduction 301
- 10.2 The Law of Biot and Savart 304
- 10.3 Ampère’s Law 307
- 10.4 The Magnetic Scalar Potential 312
- 10.5 The Vector Potential 320
- 10.6 The Topology of Magnetic Field Lines 325

Sources, References, and Additional Reading 328
Problems 329

11 Magnetic Multipoles
- 11.1 Introduction 336
- 11.2 The Magnetic Dipole 337
- 11.3 Magnetic Dipole Layers 345
- 11.4 Exterior Multipoles 346
- 11.5 Interior Multipoles 353
- 11.6 Axially Symmetric Magnetic Fields 357

Sources, References, and Additional Reading 359
Problems 361

12 Magnetic Force and Energy
- 12.1 Introduction 365
- 12.2 Charged Particle Motion 366
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>The Force between Steady Currents</td>
<td>368</td>
</tr>
<tr>
<td>12.4</td>
<td>The Magnetic Dipole</td>
<td>372</td>
</tr>
<tr>
<td>12.5</td>
<td>The Magnetic Stress Tensor</td>
<td>381</td>
</tr>
<tr>
<td>12.6</td>
<td>Magnetostatic Total Energy</td>
<td>384</td>
</tr>
<tr>
<td>12.7</td>
<td>Magnetostatic Potential Energy</td>
<td>389</td>
</tr>
<tr>
<td>12.8</td>
<td>Inductance</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>Sources, References, and Additional Reading</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>401</td>
</tr>
<tr>
<td>13</td>
<td>Magnetic Matter</td>
<td>407</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>407</td>
</tr>
<tr>
<td>13.2</td>
<td>Magnetization</td>
<td>407</td>
</tr>
<tr>
<td>13.3</td>
<td>The Field Produced by Magnetized Matter</td>
<td>412</td>
</tr>
<tr>
<td>13.4</td>
<td>Fictitious Magnetic Charge</td>
<td>415</td>
</tr>
<tr>
<td>13.5</td>
<td>The Total Magnetic Field</td>
<td>419</td>
</tr>
<tr>
<td>13.6</td>
<td>Simple Magnetic Matter</td>
<td>421</td>
</tr>
<tr>
<td>13.7</td>
<td>The Energy of Magnetic Matter</td>
<td>433</td>
</tr>
<tr>
<td>13.8</td>
<td>Forces on Magnetic Matter</td>
<td>435</td>
</tr>
<tr>
<td>13.9</td>
<td>Permanent Magnetic Matter</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Sources, References, and Additional Reading</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>448</td>
</tr>
<tr>
<td>14</td>
<td>Dynamic and Quasistatic Fields</td>
<td>455</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>455</td>
</tr>
<tr>
<td>14.2</td>
<td>The Ampère-Maxwell Law</td>
<td>456</td>
</tr>
<tr>
<td>14.3</td>
<td>Faraday’s Law</td>
<td>460</td>
</tr>
<tr>
<td>14.4</td>
<td>Electromagnetic Induction</td>
<td>462</td>
</tr>
<tr>
<td>14.5</td>
<td>Slowly Time-Varying Charge in Vacuum</td>
<td>467</td>
</tr>
<tr>
<td>14.6</td>
<td>Slowly Time-Varying Current in Vacuum</td>
<td>470</td>
</tr>
<tr>
<td>14.7</td>
<td>Quasistatic Fields in Matter</td>
<td>472</td>
</tr>
<tr>
<td>14.8</td>
<td>Poor Conductors: Quasi-Electrostatics</td>
<td>473</td>
</tr>
<tr>
<td>14.9</td>
<td>Good Conductors: Quasi-Magnetostatics</td>
<td>475</td>
</tr>
<tr>
<td>14.10</td>
<td>The Skin Effect</td>
<td>477</td>
</tr>
<tr>
<td>14.11</td>
<td>Magnetic Diffusion</td>
<td>481</td>
</tr>
<tr>
<td>14.12</td>
<td>Eddy-Current Phenomena</td>
<td>483</td>
</tr>
<tr>
<td>14.13</td>
<td>AC Circuit Theory</td>
<td>486</td>
</tr>
<tr>
<td></td>
<td>Sources, References, and Additional Reading</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>494</td>
</tr>
<tr>
<td>15</td>
<td>General Electromagnetic Fields</td>
<td>501</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>501</td>
</tr>
<tr>
<td>15.2</td>
<td>Symmetry</td>
<td>501</td>
</tr>
<tr>
<td>15.3</td>
<td>Electromagnetic Potentials</td>
<td>503</td>
</tr>
<tr>
<td>15.4</td>
<td>Conservation of Energy</td>
<td>507</td>
</tr>
<tr>
<td>15.5</td>
<td>Conservation of Linear Momentum</td>
<td>511</td>
</tr>
<tr>
<td>15.6</td>
<td>Conservation of Angular Momentum</td>
<td>516</td>
</tr>
<tr>
<td>15.7</td>
<td>The Center of Energy</td>
<td>519</td>
</tr>
<tr>
<td>15.8</td>
<td>Conservation Laws in Matter</td>
<td>522</td>
</tr>
</tbody>
</table>
CONTENTS

15.9 The Force on Isolated Matter 526

Sources, References, and Additional Reading 529

Problems 531

16 Waves in Vacuum 536
16.1 Introduction 536
16.2 The Wave Equation 537
16.3 Plane Waves 539
16.4 Polarization 545
16.5 Wave Packets 552
16.6 The Helmholtz Equation 557
16.7 Beam-Like Waves 558
16.8 Spherical Waves 565
16.9 Hertz Vectors 569
16.10 Forces on Particles in Free Fields 571

Sources, References, and Additional Reading 575

Problems 577

17 Waves in Simple Matter 584
17.1 Introduction 584
17.2 Plane Waves 584
17.3 Reflection and Refraction 588
17.4 Radiation Pressure 599
17.5 Layered Matter 602
17.6 Simple Conducting Matter 607
17.7 Anisotropic Matter 613

Sources, References, and Additional Reading 616

Problems 617

18 Waves in Dispersive Matter 624
18.1 Introduction 624
18.2 Frequency Dispersion 624
18.3 Energy in Dispersive Matter 627
18.4 Transverse and Longitudinal Waves 629
18.5 Classical Models for Frequency Dispersion 630
18.6 Wave Packets in Dispersive Matter 641
18.7 The Consequences of Causality 649
18.8 Spatial Dispersion 656

Sources, References, and Additional Reading 657

Problems 659

19 Guided and Confined Waves 666
19.1 Introduction 666
19.2 Transmission Lines 667
19.3 Planar Conductors 672
19.4 Conducting Tubes 675
19.5 Dielectric Waveguides 687
19.6 Conducting Cavities 693
CONTENTS

19.7 Dielectric Resonators 704
Sources, References, and Additional Reading 706
Problems 707

20 Retardation and Radiation 714

20.1 Introduction 714
20.2 Inhomogeneous Wave Equations 715
20.3 Retardation 719
20.4 The Time-Dependent Electric Dipole 727
20.5 Radiation 730
20.6 Thin-Wire Antennas 737
20.7 Cartesian Multipole Radiation 743
20.8 Spherical Multipole Radiation 755
20.9 Radiation in Matter 762
Sources, References, and Additional Reading 765
Problems 767

21 Scattering and Diffraction 775

21.1 Introduction 775
21.2 The Scattering Cross Section 776
21.3 Thomson Scattering 777
21.4 Rayleigh Scattering 782
21.5 Two Exactly Solvable Problems 783
21.6 Two Approximation Schemes 790
21.7 The Total Cross Section 793
21.8 Diffraction by a Planar Aperture 797
21.9 Generalized Optical Principles 807
Sources, References, and Additional Reading 812
Problems 814

22 Special Relativity 822

22.1 Introduction 822
22.2 Galileo’s Relativity 823
22.3 Einstein’s Relativity 825
22.4 The Lorentz Transformation 826
22.5 Four-Vectors 834
22.6 Electromagnetic Quantities 839
22.7 Covariant Electrodynamics 848
22.8 Matter in Uniform Motion 858
Sources, References, and Additional Reading 863
Problems 865

23 Fields from Moving Charges 870

23.1 Introduction 870
23.2 The Liénard-Wiechert Problem 870
23.3 Radiation in the Time Domain 880
23.4 Radiation in the Frequency Domain 886
23.5 Synchrotron Radiation 891
CONTENTS

23.6 Radiation Reaction 899
23.7 Cherenkov Radiation 906
 Sources, References, and Additional Reading 910
 Problems 912

24 Lagrangian and Hamiltonian Methods 916
24.1 Introduction 916
24.2 Hamilton’s Principle 916
24.3 Lagrangian Description 918
24.4 Invariance and Conservation Laws 927
24.5 Hamiltonian Description 931
 Sources, References, and Additional Reading 940
 Problems 941

Appendix A List of Important Symbols 945
Appendix B Gaussian Units 949
Appendix C Special Functions 953
Appendix D Managing Minus Signs in Special Relativity 959

Index 964
Table of Applications

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Two Identities for $\nabla \times \mathbf{L}$</td>
<td>1.2.7</td>
</tr>
<tr>
<td>1.2</td>
<td>Inversion and Reflection</td>
<td>1.8.1</td>
</tr>
<tr>
<td>2.1</td>
<td>Moving Point Charges</td>
<td>2.1.3</td>
</tr>
<tr>
<td>3.1</td>
<td>Field Lines for a Point Charge in a Uniform Field</td>
<td>3.4.4</td>
</tr>
<tr>
<td>3.2</td>
<td>The Ionization Potential of a Metal Cluster</td>
<td>3.6.2</td>
</tr>
<tr>
<td>4.1</td>
<td>Monolayer Electric Dipole Drops</td>
<td>4.3.2</td>
</tr>
<tr>
<td>4.2</td>
<td>Nuclear Quadrupole Moments</td>
<td>4.4.2</td>
</tr>
<tr>
<td>4.3</td>
<td>The Potential Produced by $\sigma(\theta) = \sigma_0 \cos \theta$</td>
<td>4.6.3</td>
</tr>
<tr>
<td>4.4</td>
<td>The Liquid Drop Model of Nuclear Fission</td>
<td>4.6.4</td>
</tr>
<tr>
<td>4.5</td>
<td>The Dielectric Polarization $\mathbf{P}(\mathbf{r})$</td>
<td>4.7.1</td>
</tr>
<tr>
<td>5.1</td>
<td>$\sigma(r, \theta)$ for a Conducting Disk</td>
<td>5.2.2</td>
</tr>
<tr>
<td>5.2</td>
<td>Coulomb Blockade</td>
<td>5.5</td>
</tr>
<tr>
<td>6.1</td>
<td>A Uniformly Polarized Sphere</td>
<td>6.3</td>
</tr>
<tr>
<td>6.2</td>
<td>Refraction of Field Lines at a Dielectric Interface</td>
<td>6.5.4</td>
</tr>
<tr>
<td>6.3</td>
<td>A Classical Model for Quark Confinement</td>
<td>6.7.2</td>
</tr>
<tr>
<td>6.4</td>
<td>The Electric Force on an Embedded Volume</td>
<td>6.8.5</td>
</tr>
<tr>
<td>7.1</td>
<td>A Conducting Duct</td>
<td>7.5</td>
</tr>
<tr>
<td>7.2</td>
<td>Going Off the Axis</td>
<td>7.6.1</td>
</tr>
<tr>
<td>7.3</td>
<td>The Unisphere</td>
<td>7.7</td>
</tr>
<tr>
<td>7.4</td>
<td>An Electrostatic Lens</td>
<td>7.8.2</td>
</tr>
<tr>
<td>8.1</td>
<td>The Electrostatics of an Ion Channel</td>
<td>8.3.4</td>
</tr>
<tr>
<td>8.2</td>
<td>A Point Charge Outside a Grounded Tube</td>
<td>8.5.5</td>
</tr>
<tr>
<td>8.3</td>
<td>A Wire Array Above a Grounded Plane</td>
<td>8.6</td>
</tr>
<tr>
<td>9.1</td>
<td>Contact Resistance</td>
<td>9.5</td>
</tr>
<tr>
<td>9.2</td>
<td>The Electric Field Outside a Current-Carrying Wire</td>
<td>9.7.4</td>
</tr>
<tr>
<td>9.3</td>
<td>The Four-Point Resistance Probe</td>
<td>9.8</td>
</tr>
<tr>
<td>9.4</td>
<td>The Resting Potential of a Cell</td>
<td>9.9</td>
</tr>
<tr>
<td>Number</td>
<td>Name</td>
<td>Section</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>10.1</td>
<td>Irrotational Current Sources</td>
<td>10.2</td>
</tr>
<tr>
<td>10.2</td>
<td>Magnetic Resonance Imaging</td>
<td>10.4.2</td>
</tr>
<tr>
<td>10.3</td>
<td>Chaotic Lines of \mathbf{B}</td>
<td>10.6.1</td>
</tr>
<tr>
<td>11.1</td>
<td>The Point Magnetic Monopole</td>
<td>11.2.3</td>
</tr>
<tr>
<td>11.2</td>
<td>Parity Violation and the Anapole Moment</td>
<td>11.4.1</td>
</tr>
<tr>
<td>11.3</td>
<td>The Helmholtz Anti-Coil</td>
<td>11.4.6</td>
</tr>
<tr>
<td>11.4</td>
<td>Strong Focusing by Quadrupole Magnetic Fields</td>
<td>11.5.2</td>
</tr>
<tr>
<td>11.5</td>
<td>The Principle of the Electron Microscope</td>
<td>11.6</td>
</tr>
<tr>
<td>11.6</td>
<td>The Magnetic Mirror</td>
<td>12.4.1</td>
</tr>
<tr>
<td>12.1</td>
<td>Magnetic Trapping</td>
<td>12.4.2</td>
</tr>
<tr>
<td>12.2</td>
<td>Magnetic Bacteria in a Rotating Field</td>
<td>12.4.4</td>
</tr>
<tr>
<td>12.3</td>
<td>The Magnetic Virial Theorem</td>
<td>12.5.1</td>
</tr>
<tr>
<td>12.4</td>
<td>The Solar Corona</td>
<td>12.6.1</td>
</tr>
<tr>
<td>13.1</td>
<td>A Uniformly Magnetized Sphere</td>
<td>13.4.1</td>
</tr>
<tr>
<td>13.2</td>
<td>Magnetic Shielding</td>
<td>13.6.4</td>
</tr>
<tr>
<td>13.3</td>
<td>The Magnetic Force on an Embedded Volume</td>
<td>13.8.5</td>
</tr>
<tr>
<td>13.4</td>
<td>Refrigerator Magnets</td>
<td>13.9.1</td>
</tr>
<tr>
<td>14.1</td>
<td>The Dielectric Constant of a Plasma</td>
<td>14.2.2</td>
</tr>
<tr>
<td>14.2</td>
<td>Faraday’s Disk Generator</td>
<td>14.4.1</td>
</tr>
<tr>
<td>14.3</td>
<td>The Quadrupole Mass Spectrometer</td>
<td>14.5.1</td>
</tr>
<tr>
<td>14.4</td>
<td>A Solenoid with a Time-Harmonic Current</td>
<td>14.6.1</td>
</tr>
<tr>
<td>14.5</td>
<td>The Power Dissipated in a Metal by a Passing Charge</td>
<td>14.8</td>
</tr>
<tr>
<td>14.6</td>
<td>Shielding of an AC Magnetic Field by a Cylindrical Shell</td>
<td>14.10.1</td>
</tr>
<tr>
<td>14.7</td>
<td>Thomson’s Jumping Ring</td>
<td>14.13.3</td>
</tr>
<tr>
<td>15.1</td>
<td>Uniqueness of Solutions and Boundary Conditions</td>
<td>15.4.1</td>
</tr>
<tr>
<td>15.2</td>
<td>P_{EM} for a Capacitor in a Uniform Magnetic Field</td>
<td>15.5.3</td>
</tr>
<tr>
<td>15.3</td>
<td>The Hidden Momentum of a Static System</td>
<td>15.7</td>
</tr>
<tr>
<td>15.4</td>
<td>The Importance of Being Angular</td>
<td>16.8.2</td>
</tr>
<tr>
<td>16.1</td>
<td>Whittaker’s Theorem Revisited</td>
<td>16.9.2</td>
</tr>
<tr>
<td>17.1</td>
<td>Alfvén Waves</td>
<td>17.2.1</td>
</tr>
<tr>
<td>17.2</td>
<td>Bragg Mirrors</td>
<td>17.5.2</td>
</tr>
<tr>
<td>17.3</td>
<td>Plane Wave Propagation in a Uniaxial Crystal</td>
<td>17.7.1</td>
</tr>
<tr>
<td>18.1</td>
<td>Charge Relaxation in an Ohmic Medium</td>
<td>18.5.3</td>
</tr>
<tr>
<td>18.2</td>
<td>Reflection of Radio Waves by the Ionosphere</td>
<td>18.5.5</td>
</tr>
<tr>
<td>18.3</td>
<td>Lorentz Model Velocities</td>
<td>18.6.1</td>
</tr>
<tr>
<td>18.4</td>
<td>Whistlers</td>
<td>18.6.2</td>
</tr>
<tr>
<td>18.5</td>
<td>Sum Rules</td>
<td>18.7.4</td>
</tr>
<tr>
<td>19.1</td>
<td>Slow Waves for Charged Particle Acceleration</td>
<td>19.4.8</td>
</tr>
<tr>
<td>19.2</td>
<td>Quantum Billiards in a Resonant Cavity</td>
<td>19.6.4</td>
</tr>
<tr>
<td>19.3</td>
<td>Whispering Gallery Modes</td>
<td>19.7</td>
</tr>
<tr>
<td>20.1</td>
<td>The Fields of a Point Charge in Uniform Motion I</td>
<td>20.2</td>
</tr>
<tr>
<td>20.2</td>
<td>Schott’s Formulae</td>
<td>20.3.4</td>
</tr>
<tr>
<td>20.3</td>
<td>The Classical Zeeman Effect</td>
<td>20.7.1</td>
</tr>
<tr>
<td>21.1</td>
<td>The Polarization of Cosmic Microwave Radiation</td>
<td>21.3</td>
</tr>
<tr>
<td>21.2</td>
<td>Approximate Mie Scattering</td>
<td>21.7.1</td>
</tr>
<tr>
<td>21.3</td>
<td>Sub-wavelength Apertures and Near-Field Optics</td>
<td>21.9.1</td>
</tr>
<tr>
<td>Number</td>
<td>Name</td>
<td>Section</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>22.1</td>
<td>The Global Positioning System</td>
<td>22.3.1</td>
</tr>
<tr>
<td>22.2</td>
<td>Heavy Ion Collisions and the Quark Gluon Plasma</td>
<td>22.4.2</td>
</tr>
<tr>
<td>22.3</td>
<td>Charged Particle Motion in a Plane Wave</td>
<td>22.5.2</td>
</tr>
<tr>
<td>22.4</td>
<td>Reflection from a Moving Mirror</td>
<td>22.6.5</td>
</tr>
<tr>
<td>22.5</td>
<td>The Electric Field Outside a Pulsar</td>
<td>22.8.2</td>
</tr>
<tr>
<td>23.1</td>
<td>The Fields of a Point Charge in Uniform Motion II</td>
<td>23.2.4</td>
</tr>
<tr>
<td>23.2</td>
<td>A Collinear Acceleration Burst</td>
<td>23.4.4</td>
</tr>
</tbody>
</table>
Preface

A textbook, as opposed to a treatise, should include everything a student must know, not everything the author does know.

Kenneth Johnson, quoted by Francis Low (1997)

In his Lectures on Physics, Richard Feynman asserts that “ten thousand years from now, there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics”. Whether this prediction is borne out or not, it is impossible to deny the significance of Maxwell’s achievement to the history, practice, and future of physics. That is why electrodynamics has a permanent place in the physics curriculum, along with classical mechanics, quantum mechanics, and statistical mechanics. Of these four, students often find electrodynamics the most challenging. One reason is surely the mathematical demands of vector calculus and partial differential equations. Another stumbling block is the non-algorithmic nature of electromagnetic problem-solving. There are many entry points to a typical electromagnetism problem, but it is rarely obvious which lead to a quick solution and which lead to frustrating complications. Finally, Freeman Dyson points to the “two-level” structure of the theory.¹ A first layer of linear equations relates the electric and magnetic fields to their sources and to each other. A second layer of equations for force, energy, and stress are quadratic in the fields. Our senses and measurements probe the second-layer quantities, which are determined only indirectly by the fundamental first-layer quantities.

Modern Electrodynamics is a resource for graduate-level readers interested to deepen their understanding of electromagnetism without minimizing the role of the mathematics. The book’s size was dictated by two considerations: first, my aim that it serve both as a classroom text and as a reference volume; second, my struggle to apply the epigraph at the top of the page.² Physicists are a prickly and opinionated bunch, so it is not surprising that there is very little agreement about “everything a student must know” about electromagnetism at the graduate level. Beyond a very basic core (the main content of undergraduate texts), the topics which appear in graduate-level textbooks and (electronically) published lecture notes depend strongly on the research background of the writer and whether he or she is a theorist or an experimenter. Some instructors view the subject as a convenient setting to illustrate the methods of mathematical physics and/or computational physics. Others see it as an opportunity to introduce topics (optics, plasma physics, astrophysics, biophysics, etc.) into a curriculum which might otherwise not include them. Still others teach electromagnetism for the main purpose of introducing the methods of relativistic field theory to their students.

Given the many uses of this foundational course, Modern Electrodynamics purposely contains much more material than can be comfortably covered in a two-semester course. Presentations with quite

² From the preface to F.E. Low, Classical Field Theory (Wiley, New York, 1997), p. xi.
different emphases can be constructed by making different choices from among the many topics offered for discussion. All instructors will omit various sections and probably entire chapters. Consistent with this point of view, I do not offer a single, idiosyncratic “vision” of electromagnetism. Rather, I have aimed to present what seemed (to me) to be the pedagogically soundest approach for students coming to this material after a first serious exposure at the junior/senior undergraduate level. In many cases, the same issue is examined from more than one point of view. The mathematics of the subject is given its proper due, but the qualitative and physical arguments I provide may ultimately remain with the reader longer.

The organization of this book reflects my personal experience as an instructor. After experimenting with relativity-first, Lagrangian-first, and radiation-first approaches, I concluded that the majority of students grasped the subject matter best when I used a traditional arrangement of topics. The text is purposely repetitive. This is done both to reinforce key ideas and to help readers who do not read the text in chapter order. My background as a condensed matter physicist appears in various places, including an emphasis on the practical (rather than the formal) aspects of microscopic averaging, a discussion of the limitations of the Lorentz model of dielectric and magnetic matter, and the presence of an entire chapter devoted to the experimentally important subject of quasistatics.

Every chapter of Modern Electrodynamics contains worked examples chosen either to develop problem-solving skills or to reveal subtleties of the subject which do not appear when one’s exposure is limited to a few standard examples. Every chapter also contains several “applications” drawn from all the major subfields of physics. By and large, these are topics I was unwilling to relegate to the end-of-chapter homework for fear many readers would never see them. About half the chapters include a boxed excursion into a issue (often historical) where words serve better than equations, and every chapter ends with an annotated list of Sources, References, & Additional Reading to acknowledge my debt to others and to stimulate inquisitive readers. Finally, every chapter contains a large number of homework problems. These range from undergraduate-type drill problems to more challenging problems drawn directly from the research literature. Like most textbook authors, I emphasize that active engagement with the homework problems is an important part of the learning process. This is particularly important for electromagnetism where the struggle with difficult problems has somehow (wrongly) been elevated to a rite of passage. My desired outcome is a reader who, after completion of a course based on this book, can comfortably read and understand (if not necessarily reproduce in detail) a non-trivial electromagnetic argument or calculation which appears in the course of his or her research or reading.

The modernity of the text indicated by its title is not associated with the use of particularly “modern” mathematical methods. Rather, it derives from the inclusion of topics which have attracted new or renewed attention in recent decades. Examples include the electrostatics of ion channels, the modern theory of electric polarization, magnetic resonance imaging, the quantum Hall effect, optical tweezers, negative refraction, the time-domain approach to radiation, the polarization anisotropy of the cosmic microwave background, near-field optics, and relativistic heavy ion collisions. To keep the text finite, some familiar special topics from other texts have been omitted or barely touched upon. Examples include collisions and energy exchange between charged particles, the method of virtual quanta, transition radiation, energy loss in matter, and classical models of the electron. On the other hand, Modern Electrodynamics includes an overview of Dirac’s Hamiltonian approach to electrodynamics and an update on certain “perpetual” problems like the correctness of the Lorentz-Dirac equation of motion for classical point particles and the Abraham-Minkowski controversy over the electromagnetic energy-momentum tensor in matter. All of these are illustrative of the self-refreshing nature of a subject which is re-invented by every new generation to meet its needs.

Finally, two choices I have made may give pause to some readers. One is my use of SI units throughout. The other is my use of the imaginary number i to impose the metric in special relativity. The technical rationale for using SI units is given in Section 2.6. An equally good reason is simply that
this system has become the worldwide standard and nearly all undergraduate textbooks use it without apology. However, because the physics literature is replete with books and research papers which use Gaussian units, Appendix B discusses this system and provides an algorithm to painlessly convert from SI to Gaussian and vice versa.

My reason for using the “old-fashioned” Minkowski metric is purely pedagogical and cannot be stated more clearly than Nobel prize winner Gerard ’t Hooft did in the preface to his Introduction to General Relativity (2001), namely: “In special relativity, the i has considerable practical advantage: Lorentz transformations are orthogonal, and all inner products only come with $+$ signs. No confusion over signs remains”. Although he switches to a metric tensor to discuss general relativity (as he must), ’t Hooft further champions his use of i in special relativity with the remark, “I see no reason to shield students against the phenomenon of changes in convention and notation. Such transitions are necessary whenever one switches from one research field to another. They better get used to it”. That being said, Appendix D outlines the use of the metric tensor $g_{\mu\nu}$ in special relativity.

It would have been impossible for me to write this book without help. At the top of the list, I gratefully acknowledge the contributions of Wayne Saslow (Texas A&M University) and Glenn Smith (Georgia Tech). These colleagues read and commented on many chapters and were always willing to talk electromagnetism with me. My colleague Brian Kennedy (Georgia Tech) repeatedly put aside his research work and helped on the many occasions when I managed to confuse myself. Special thanks go to Michael Cohen (University of Pennsylvania), who tried to teach me this subject when I was a graduate student and who generously shared many of his insights and thoughtful homework problems. I regret that Mike never found the time to write his own book on this subject.

I am happy to acknowledge David Vanderbilt (Rutgers University) and Stephen Barnett (University of Strathclyde) who provided essential help for my discussions of dielectric polarization and radiation pressure, respectively. Olivier Darrigol (CNRS, Laboratoire SPHERE) answered my questions about the history of Lagrangians in electrodynamics and Andrew Scherbakov (Georgia Tech) gave assistance with the homework problems. I also thank the brave souls who provided feedback after testing some of this material in their classrooms: Michael Pustilnik, Roman Grigoriev, and Pablo Laguna (Georgia Tech), Peter McIntyre (Texas A&M University), Brian Tonner (University of Central Florida), Jiang Xiao (Fudan University), and Kapil Krishan (Jawaharlal Nehru University). Finally, I am delighted to thank my editor Simon Capelin and his first-rate staff at Cambridge University Press. Simon never failed to show enthusiasm for this project, now over more years than either of us would care to remember.

I dedicate this work to my wife Sonia and daughter Hannah. They suffered, but not in silence.