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1 Mathematical Preliminaries

The enormous usefulness of mathematics in the natural

sciences is something bordering on the mysterious.

Eugene Wigner (1960)

1.1 Introduction

This chapter presents a collection of mathematical notation, definitions, identities, theorems, and

transformations that play an important role in the study of electromagnetism. A brief discussion

accompanies some of the less familiar topics and only a few proofs are given in detail. For more details

and complete proofs, the reader should consult the books and papers listed in Sources, References,

and Additional Reading at the end of the chapter. Appendix C at the end of the book summarizes the

properties of Legendre polynomials, spherical harmonics, and Bessel functions.

1.2 Vectors

A vector is a geometrical object characterized by a magnitude and direction.1 Although not necessary,

it is convenient to discuss an arbitrary vector using its components defined with respect to a given

coordinate system. An example is the right-handed coordinate system with orthogonal unit basis

vectors (ê1, ê2, ê3) shown in Figure 1.1, where

ê1 · ê1 = 1 ê2 · ê2 = 1 ê3 · ê3 = 1 (1.1)

ê1 · ê2 = 0 ê2 · ê3 = 0 ê3 · ê1 = 0 (1.2)

ê1 × ê2 = ê3 ê2 × ê3 = ê1 ê3 × ê1 = ê2. (1.3)

We express an arbitrary vector V in this basis using components Vk = êk · V,

V = V1ê1 + V2ê2 + V3ê3. (1.4)

A vector can be decomposed in any coordinate system we please, so

3
∑

k=1

Vk êk =

3
∑

k=1

V ′
k ê′

k. (1.5)

1 A more precise definition of a vector is given in Section 1.8.
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2 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS
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Figure 1.1: An orthonormal set of unit vectors ê1, ê2, ê3. V is an arbitrary vector.
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Figure 1.2: Two curvilinear coordinate systems.

1.2.1 Cartesian Coordinates

Our notation for Cartesian components and unit vectors is

V = Vx x̂ + Vy ŷ + Vzẑ. (1.6)

In particular, rk always denotes the Cartesian components of the position vector,

r = xx̂ + yŷ + zẑ. (1.7)

It is not obvious geometrically (see Example 1.7 in Section 1.8), but the gradient operator is a vector

with the Cartesian representation

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.8)

The divergence, curl, and Laplacian operations are, respectively,

∇ · V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
(1.9)

∇ × V =

(

∂Vz

∂y
−

∂Vy

∂z

)

x̂ +

(

∂Vx

∂z
−

∂Vz

∂x

)

ŷ +

(

∂Vy

∂x
−

∂Vx

∂y

)

ẑ (1.10)

∇2A =
∂2A

∂x2
+

∂2A

∂y2
+

∂2A

∂z2
. (1.11)

1.2.2 Cylindrical Coordinates

Figure 1.2(a) defines cylindrical coordinates (ρ, φ, z). Our notation for the components and unit vectors

in this system is

V = Vρ ρ̂ + Vφφ̂ + Vzẑ. (1.12)

The transformation to Cartesian coordinates is

x = ρ cos φ y = ρ sin φ z = z. (1.13)

www.cambridge.org/9780521896979
www.cambridge.org


Cambridge University Press
978-0-521-89697-9 — Modern Electrodynamics
Andrew Zangwill 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Vectors 3

The volume element in cylindrical coordinates is d 3r = ρdρdφdz. The unit vectors (ρ̂, φ̂, ẑ) form a

right-handed orthogonal triad. ẑ is the same as in Cartesian coordinates. Otherwise,

ρ̂ = x̂ cos φ + ŷ sin φ x̂ = ρ̂ cos φ − φ̂ sin φ (1.14)

φ̂ = −x̂ sin φ + ŷ cos φ ŷ = ρ̂ sin φ + φ̂ cos φ. (1.15)

The gradient operator in cylindrical coordinates is

∇ = ρ̂
∂

∂ρ
+

φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
. (1.16)

The divergence, curl, and Laplacian operations are, respectively,

∇ · V =
1

ρ

∂(ρVρ)

∂ρ
+

1

ρ

∂Vφ

∂φ
+

∂Vz

∂z
(1.17)

∇ × V =

[

1

ρ

∂Vz

∂φ
−

∂Vφ

∂z

]

ρ̂ +

[

∂Vρ

∂z
−

∂Vz

∂ρ

]

φ̂ +
1

ρ

[

∂(ρVφ)

∂ρ
−

∂Vρ

∂φ

]

ẑ (1.18)

∇2A =
1

ρ

∂

∂ρ

(

ρ
∂A

∂ρ

)

+
1

ρ2

∂2A

∂φ2
+

∂2A

∂z2
. (1.19)

1.2.3 Spherical Coordinates

Figure 1.2(b) defines spherical coordinates (r, θ, φ). Our notation for the components and unit vectors

in this system is

V = Vr r̂ + Vθ θ̂ + Vφφ̂. (1.20)

The transformation to Cartesian coordinates is

x = r sin θ cos φ y = r sin θ sin φ z = r cos θ. (1.21)

The volume element in spherical coordinates is d 3r = r2 sinθdrdθdφ. The unit vectors are related by

r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ x̂ = r̂ sin θ cos φ + θ̂ cos θ cos φ − φ̂ sin φ (1.22)

θ̂ = x̂ cos θ cos φ + ŷ cos θ sin φ − ẑ sin θ ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cos φ (1.23)

φ̂ = −x̂ sin φ + ŷ cos φ ẑ = r̂ cos θ − θ̂ sin θ. (1.24)

The gradient operator in spherical coordinates is

∇ = r̂
∂

∂r
+

θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
. (1.25)

The divergence, curl, and Laplacian operations are, respectively,

∇ · V =
1

r2

∂(r2Vr )

∂r
+

1

r sin θ

∂(sin θ Vθ )

∂θ
+

1

r sin θ

∂Vφ

∂φ
(1.26)

∇ × V =
1

r sin θ

[

∂(sin θ Vφ)

∂θ
−

∂Vθ

∂φ

]

r̂

(1.27)

+
1

r

[

1

sin θ

∂Vr

∂φ
−

∂(rVφ)

∂r

]

θ̂ +
1

r

[

∂(rVθ )

∂r
−

∂Vr

∂θ

]

φ̂

∇2A =
1

r2

∂

∂r

(

r2 ∂A

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂A

∂θ

)

+
1

r2 sin2 θ

∂2A

∂φ2
. (1.28)
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4 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

1.2.4 he Einstein Summation Convention

Einstein (1916) introduced the following convention. An index which appears exactly twice in a single

term of a mathematical expression is implicitly summed over all possible values for that index. The

range of this dummy index must be clear from context and the index cannot be used elsewhere in the

same expression for another purpose. In this book, the range for a roman index like i is from 1 to

3, indicating a sum over the Cartesian indices x, y, and z. Thus, V in (1.6) and its dot product with

another vector F are written

V =

3
∑

k=1

Vk êk ≡ Vk êk V · F =

3
∑

k=1

VkFk ≡ VkFk. (1.29)

In a Cartesian basis, the gradient of a scalar ϕ and the divergence of a vector D can be variously written

∇ϕ = êk∇kϕ = êk∂kϕ = êk

∂ϕ

∂rk

(1.30)

∇ · D = ∇kDk = ∂kDk =
∂Dk

∂rk

. (1.31)

If an N × N matrix C is the product of an N × M matrix A and an M × N matrix B,

Cik =

M
∑

j=1

AijBjk = AijBjk. (1.32)

1.2.5 he Kronecker and Levi-Cività Symbols

The Kronecker delta symbol δij and Levi-Cività permutation symbol ǫijk have roman indices i, j , and

k which take on the Cartesian coordinate values x, y, and z. They are defined by

δij =

{

1 i = j,

0 i �= j,
(1.33)

and

ǫijk =

⎧

⎨

⎩

1 ijk = xyz yzx zxy,

−1 ijk = xzy yxz zyx,

0 otherwise.

(1.34)

Some useful Kronecker delta and Levi-Cività symbol identities are

êi · êj = δij δkk = 3 (1.35)

∂krj = δjk Vkδkj = Vj (1.36)

[V × F]i = ǫijkVjFk [∇ × A]i = ǫijk∂jAk (1.37)

δijǫijk = 0 ǫijkǫijk = 6. (1.38)

A particularly useful identity involves a single sum over the repeated index i:

ǫijkǫist = δjsδkt − δj tδks . (1.39)

A generalization of (1.39) when there are no repeated indices to sum over is the determinant

ǫkiℓ ǫmpq =

∣

∣

∣

∣

∣

∣

δkm δim δℓm

δkp δip δℓp

δkq δiq δℓq

∣

∣

∣

∣

∣

∣

. (1.40)
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1.2 Vectors 5

Finally, let C be a 3 × 3 matrix with matrix elements C11, C12, etc. The determinant of C can be

written using either an expansion by columns,

det C = ǫijkCi1Cj2Ck3, (1.41)

or an expansion by rows,

det C = ǫijkC1iC2jC3k. (1.42)

A closely related identity we will use in Section 1.8.1 is

ǫℓmn det C = ǫijkCℓiCmjCnk. (1.43)

1.2.6 Vector Identities in Cartesian Components

The Kronecker and Levi-Cività symbols simplify the proof of vector identities. An example is

a × (b × c) = b(a · c) − c(a · b). (1.44)

Using the left side of (1.37), the ith component of a × (b × c) is

[a × (b × c)]i = ǫijkaj (b × c)k = ǫijkajǫkℓmblcm. (1.45)

The definition (1.34) tells us that ǫijk = ǫkij . Therefore, the identity (1.39) gives

[a × (b × c)]i = ǫkijǫkℓmajbℓcm = (δiℓδjm − δimδjℓ)ajbℓcm = ajbicj − ajbjci . (1.46)

The final result, bi(a · c) − ci(a · b), is indeed the ith component of the right side of (1.44). The

same method of proof applies to gradient-, divergence-, and curl-type vector identities because the

components of the ∇ operator transform like the components of a vector [see above (1.8)]. The next

three examples illustrate this point.

Example 1.1 Prove that ∇ · (∇ × g) = 0.

Solution: Begin with ∇ · (∇ × g) = ∂iǫijk∂jgk = 1
2
∂i∂jgkǫijk + 1

2
∂i∂jgkǫijk . Exchanging the

dummy indices i and j in the last term gives

∇ · ∇ × g = 1
2
∂i∂jgkǫijk + 1

2
∂j∂igkǫjik = 1

2
{ǫijk + ǫjik}∂i∂jgk = 0.

The final zero comes from ǫijk = −ǫjik , which is a consequence of (1.34).

Example 1.2 Prove that ∇ × (A × B) = A∇ · B − (A · ∇)B + (B · ∇)A − B∇ · A.

Solution: Focus on the ith Cartesian component and use the left side of (1.37) to write

[∇ × (A × B)]i = ǫijk∂j (A × B)k = ǫijkǫkst∂j (AsBt ).

The cyclic properties of the Levi-Cività symbol and the identity (1.39) give

[∇ × (A × B)]i = ǫkijǫkst∂j (AsBt ) = (δisδj t − δitδjs)(As∂jBt + Bt∂jAs).

Therefore,

[∇ × (A × B)]i = Ai∂jBj − Aj∂jBi + Bj∂jAi − Bi∂jAj .

This proves the identity because the choice of i is arbitrary.
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6 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

Example 1.3 Prove the “double-curl identity” ∇ × (∇ × A) = ∇(∇ · A) − ∇2A.

Solution: Consider the ith Cartesian component. The identity on the left side of (1.37) and the

invariance of the Levi-Cività symbol with respect to cyclic permutations of its indices give

[∇ × (∇ × A)]i = ǫijk∂j (∇ × A)k = ǫijk∂jǫkpq∂pAq = ǫkijǫkpq∂j∂pAq .

Now apply the identity (1.39) to get

[∇ × (∇ × A)]i = (δipδjq − δiqδjp)∂j∂pAq = ∂i∂jAj − ∂j∂jAi = ∇i(∇ · A) − ∇2Ai .

The double-curl identity follows because

∇2A = ∇2(Ax x̂ + Ay ŷ + Azẑ) = x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az.

1.2.7 Vector Identities in Curvilinear Components

Care is needed to interpret the vector identities in Examples 1.2 and 1.3 when the vectors in question

are decomposed into spherical or cylindrical components such as A = Ar r̂ + Aθ θ̂ + Aφφ̂. This can

be seen from Example 1.3 where the final step is no longer valid because r̂, θ̂ , and φ̂ are not constant

vectors. In other words,

∇2A = ∇ · ∇(Ar r̂ + Aθ θ̂ + Aφφ̂) �= r̂∇2Ar + θ̂ ∇2Aθ + φ̂∇2Aφ . (1.47)

One way to proceed is to work out the components of ∇(Ar r̂), ∇(Aθ θ̂ ), and ∇(Aφφ̂). Alternatively,

we may simply define the meaning of the operation ∇2A when A is expressed using curvilinear

components. For example,

[∇2A]φ ≡ ∂φ(∇ · A) − [∇ × (∇ × A)]φ, (1.48)

and similarly for (∇2A)r and (∇2A)θ .

Exactly the same issue arises when we examine the last step in Example 1.2, namely

[∇ × (A × B)]i = Ai∇ · B − (A · ∇)Bi + (B · ∇)Ai − Bi∇ · A. (1.49)

By construction, this equation makes sense when i stands for x, y, or z. It does not make sense if i

stands for, say, r , θ , or φ. On the other hand, the full vector version of the identity is correct as long

as we retain the r , θ , and φ variations of r̂, θ̂ , and φ̂. For example,

(A · ∇)B =

[

Ar

∂

∂r
+

Aθ

r

∂

∂θ
+

Aφ

r sin θ

∂

∂φ

]

(Br r̂ + Bθ θ̂ + Bφφ̂). (1.50)

Application 1.1 Two Identities for ∇ × L

The −h = 1 version of the quantum mechanical angular momentum operator, L = −ir × ∇, plays a

useful role in the analysis of classical spherical systems. In this Application, we prove two operator

identities which will appear later in the text:

(A) ∇ × L = −ir∇2 + i∇(1 + r · ∇)

(B) ∇ × L = (r̂ × L)

(

1

r

∂

∂r
r

)

+ r̂
i

r
L2.
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Proof of Identity (A):

We use (1.37), (1.39), and the cyclic property of the Levi-Cività symbol to evaluate the kth component

of ∇ × L acting on a scalar function φ:

[∇ × L]kφ = −i[∇ × (r × ∇)]kφ = −iǫmkℓǫmst∂ℓrs∂tφ = −i[∂ℓrk∂ℓφ − ∂ℓrℓ∂kφ]. (1.51)

Because ∂ℓrℓ = 3 and ∂ℓrk = δℓk ,

∇ × Lφ = [−ir∇2 + i2∇ + i(r · ∇)∇]φ. (1.52)

However,

∂k[rℓ∂ℓφ] = ∂kφ + rℓ∂ℓ∂kφ, (1.53)

which is the kth component of ∇(r · ∇)φ = ∇φ + (r · ∇)∇φ. Substituting the latter into (1.53) gives

Identity (A).

Proof of Identity (B):

We decompose the gradient operator into its radial and angular pieces:

∇ = r̂(r̂ · ∇) − r̂ × (r̂ × ∇) = r̂
∂

∂r
−

i

r
r̂ × L. (1.54)

Equation (1.54) and the Levi-Cività formalism produce the intermediate result

∇ × L = (r̂ × L)
∂

∂r
−

i

r
(r̂ × L) × L = (r̂ × L)

∂

∂r
−

i

r

[

r̂kLLk − r̂L2
]

. (1.55)

However, the angular momentum operator obeys commutation relations which can be summarized as

L × L = iL. Therefore,

r̂ × (L × L) = ir̂ × L ⇒ r̂kLLk − r̂kLkL = ir̂ × L. (1.56)

On the other hand, rkLk = 0 because L is perpendicular to both r and ∇. Therefore, r̂kLLk = ir̂ × L,

which we can substitute into (1.55). The result is identity (B) because, for any scalar function φ,

1

r

[

∂

∂r
(rφ)

]

=
∂φ

∂r
+

φ

r
. (1.57)

�

1.3 Derivatives

1.3.1 Functions of r and |r|

The position vector is r = r r̂ with r =
√

x2 + y2 + z2. If f (r) is a scalar function and f ′(r) = df/dr ,

∇r = r̂ ∇ × r = 0 (1.58)

∇f = f ′r̂ ∇2f =
(r2f ′)′

r2
(1.59)

∇ · (f r) =
(r3f )′

r2
∇ × (f r) = 0. (1.60)

Similarly, if g(r) is a vector function and c is a constant vector,

∇ · g = g′ · r̂ ∇ × g = r̂ × g′ (1.61)

(g · ∇)r = g (r · ∇)g = rg′ (1.62)
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8 MATHEMATICAL PRELIMINARIES: DEFINITIONS, IDENTITIES, AND THEOREMS

∇(r · g) = g +
(r · g′)r

r
∇ · (g × r) = 0 (1.63)

∇ × (g × r) = 2g + rg′ −
(r · g′)r

r
∇(c · r) = c. (1.64)

1.3.2 Functions of r − r′

Let R = r − r′ = (x − x ′)x̂ + (y − y ′)ŷ + (z − z′)ẑ. Then,

∇f (R) = f ′(R)R̂ ∇ · g(R) = g′(R) · R̂ ∇ × g(R) = R̂ × g′(R). (1.65)

Moreover, because

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
and ∇ ′ = x̂

∂

∂x ′
+ ŷ

∂

∂y ′
+ ẑ

∂

∂z′
, (1.66)

it it straightforward to confirm that

∇ ′f (R) = −∇f (R). (1.67)

1.3.3 he Convective Derivative

Let φ(r, t) be a scalar function of space and time. An observer who repeatedly samples the value of

φ at a fixed point in space, r, records the time rate of change of φ as the partial derivative ∂φ/∂t .

However, the same observer who repeatedly samples φ along a trajectory in space r(t) that moves with

velocity υ(t) = ṙ(t) records the time rate of change of φ as the convective derivative,

dφ

dt
=

∂φ

∂t
+

dx

dt

∂φ

∂x
+

dy

dt

∂φ

∂y
+

dz

dt

∂φ

∂z
=

∂φ

∂t
+ (υ · ∇)φ. (1.68)

For a vector function g(r, t), the corresponding convective derivative is

dg

dt
=

∂g

∂t
+ (υ · ∇)g. (1.69)

1.3.4 Taylor’s heorem

Taylor’s theorem in one dimension is

f (x) = f (a) + (x − a)
df

dx

∣

∣

∣

∣

x=a

+
1

2!
(x − a)2 d2f

dx2

∣

∣

∣

∣

x=a

+ · · · . (1.70)

An alternative form follows from (1.70) if x → x + ǫ and a → x:

f (x + ǫ) = f (x) + ǫ
df

dx
+

1

2!
ǫ2 d2f

dx2
+ · · · . (1.71)

Equivalently,

f (x + ǫ) =

[

1 + ǫ
d

dx
+

1

2!

(

ǫ
d

dx

)2

+ · · ·

]

f (x) = exp

(

ǫ
d

dx

)

f (x). (1.72)

This generalizes for a function of three variables to

f (x + ǫx, y + ǫy, z + ǫz) = exp

(

ǫx

∂

∂x

)

exp

(

ǫy

∂

∂y

)

exp

(

ǫz

∂

∂z

)

f (x, y, z), (1.73)

or

f (r + ǫ) = exp (ǫ · ∇) f (r) =

[

1 + ǫ · ∇ +
1

2!
(ǫ · ∇)2 + · · ·

]

f (r). (1.74)
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1.4 Integrals 9

1.4 Integrals

1.4.1 Jacobian Determinant

The determinant of the Jacobian matrix J relates volume elements when changing variables in an

integral. For example, suppose x and y are N -dimensional space vectors in two different coordinate

systems, e.g., Cartesian and spherical. The volume elements dNx and dNy are related by

dNx = |J(x, y)| dNy =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂y1

∂x1

∂y2

· · ·
∂x1

∂yN

· · · ·

· · · ·
∂xN

∂y1

∂xN

∂y2

· · ·
∂xN

∂yN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dNy. (1.75)

1.4.2 he Divergence heorem

Let F(r) be a vector function defined in a volume V enclosed by a surface S with an outward normal

n̂. If dS = dSn̂, the divergence theorem is

∫

V

d 3r ∇ · F =

∫

S

dS · F. (1.76)

Special choices for the vector function F(r) produce various integral identities based on (1.76). For

example, if c is an arbitrary constant vector, the reader can confirm that the choices F(r) = cψ(r) and

F(r) = A(r) × c substituted into (1.76) respectively yield

∫

V

d 3r ∇ψ =

∫

S

dSψ (1.77)

∫

V

d 3r ∇ × A =

∫

S

dS × A. (1.78)

1.4.3 Green’s Identities

The choice F(r) = φ(r)∇ψ(r) in (1.76) leads to Green’s first identity,

∫

V

d 3r [φ∇2ψ + ∇φ · ∇ψ] =

∫

S

dS · φ∇ψ. (1.79)

Writing (1.79) with the roles of φ and ψ exchanged and subtracting that equation from (1.79) itself

gives Green’s second identity,

∫

V

d 3r [φ∇2ψ − ψ∇2φ] =

∫

S

dS · [φ∇ψ − ψ∇φ]. (1.80)

The choice F = P × ∇ × Q in (1.76) and the identity ∇ · (A × B) = B · ∇ × A − A · ∇ × B produces

a vector analog of Green’s first identity:

∫

V

d 3r [∇ × P · ∇ × Q − P · ∇ × ∇ × Q] =

∫

S

dS · (P × ∇ × Q). (1.81)
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Writing (1.81) with P and Q interchanged and subtracting that equation from (1.81) gives a vector

analog of Green’s second identity:
∫

V

d 3r [Q · ∇ × ∇ × P − P · ∇ × ∇ × Q] =

∫

S

dS · [P × ∇ × Q − Q × ∇ × P]. (1.82)

1.4.4 Stokes’ heorem

Stokes’ theorem applies to a vector function F(r) defined on an open surface S bounded by a closed

curve C. If dℓ is a line element of C,
∫

S

dS · ∇ × F =

∮

C

dℓ · F. (1.83)

The curve C in (1.83) is traversed in the direction given by the right-hand rule when the thumb points

in the direction of dS. As with the divergence theorem, variations of (1.83) follow from the choices

F = cψ and F = A × c:
∫

S

dS × ∇ψ =

∮

C

dℓψ (1.84)

∮

C

dℓ × A =

∫

S

dSk∇Ak −

∫

S

dS(∇ · A). (1.85)

1.4.5 he Time Derivative of a Flux Integral

Leibniz’ Rule for the time derivative of a one-dimensional integral is

d

dt

x2(t)
∫

x1(t)

dx b(x, t) = b(x2, t)
dx2

dt
− b(x1, t)

dx1

dt
+

x2(t)
∫

x1(t)

dx
∂b

∂t
. (1.86)

This formula generalizes to integrals over circuits, surfaces, and volumes which move through space.

Our treatment of Faraday’s law makes use of the time derivative of a surface integral where the surface

S(t) moves because its individual area elements move with velocity υ(r, t). In that case,

d

dt

∫

S(t)

dS · B =

∫

S(t)

dS ·

[

υ(∇ · B) − ∇ × (υ × B) +
∂B

∂t

]

. (1.87)

Proof: We calculate the change in flux from

δ

[∫

B · dS

]

=

∫

δB · dS +

∫

B · δ(n̂dS). (1.88)

The first term on the right comes from time variations of B. The second term comes from time variations

of the surface. Multiplication of every term in (1.88) by 1/δt gives

d

dt

∫

B · dS =

∫

∂B

∂t
· dS +

1

δt

∫

B · δ(n̂dS). (1.89)

We can focus on the second term on the right-hand side of (1.89) because the first term appears already

as the last term in (1.87). Figure 1.3 shows an open surface S(t) with local normal n̂(t) which moves

and/or distorts to the surface S(t + δt) with local normal n̂(t + δt) in time δt .
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