Cambridge University Press 978-0-521-89697-9 — Modern Electrodynamics Andrew Zangwill Excerpt <u>More Information</u>

Modern Electrodynamics

An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks.

Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity, and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes *Modern Electrodynamics* a must-have for every student of this subject.

In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is available for instructors at www.cambridge.org/Zangwill.

Andrew Zangwill is a Professor of Physics at the Georgia Institute of Technology and a Fellow of the American Physical Society. He is the author of the popular monograph *Physics at Surfaces* (Cambridge University Press, 1988).

Cambridge University Press 978-0-521-89697-9 — Modern Electrodynamics Andrew Zangwill Excerpt <u>More Information</u>

Modern Electrodynamics

ANDREW ZANGWILL Georgia Institute of Technology

Cambridge University Press 978-0-521-89697-9 — Modern Electrodynamics Andrew Zangwill Excerpt <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/Zangwill

© A. Zangwill 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 3rd printing 2020

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Zangwill, Andrew. Modern electrodynamics / Andrew Zangwill. pages cm Includes bibliographical references and index. ISBN 978-0-521-89697-9 1. Electrodynamics – Textbooks. I. Title. QC631.Z36 2012 537.6 – dc23 2012035054

ISBN 978-0-521-89697-9 Hardback

Additional resources for this publication at www.cambridge.org/Zangwill

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-89697-9 — Modern Electrodynamics Andrew Zangwill Excerpt <u>More Information</u>

There are more things in heaven & earth connected with electromagnetism than are yet dream't of in philosophy.

Joseph Henry, letter to Lewis C. Beck (1827)

Reprinted from *The Papers of Joseph Henry*, Volume I, edited by Nathan Reingold (Washington, DC: Smithsonian Institution Press). Used by permission of the Smithsonian Institution. Copyright 1972.

The search for reason ends at the shore of the known; on the immense expanse beyond it only the ineffable can glide.

Abraham Joshua Heschel, Man is Not Alone (1951)

Why repeat all this? Because there are new generations born every day. Because there are great ideas developed in the history of man, and these ideas do not last unless they are passed purposely and clearly from generation to generation.

Richard Feynman, The Meaning of It All (1963)

Cambridge University Press 978-0-521-89697-9 — Modern Electrodynamics Andrew Zangwill Excerpt <u>More Information</u>

Contents

	Table of Applications	<i>page</i> xv
	Preface	xix
1	Mathematical Preliminaries	1
1.1	Introduction	1
1.2	Vectors	1
1.3	Derivatives	7
1.4	Integrals	9
1.5	Generalized Functions	11
1.6	Fourier Analysis	15
1.7	Orthogonal Transformations	18
1.8	Cartesian Tensors	20
1.9	The Helmholtz Theorem	22
1.10	Lagrange Multipliers	24
	Sources, References, and Additional Reading	24
	Problems	25
2	The Maxwell Equations	29
2.1	Introduction	29
2.2	The Maxwell Equations in Vacuum	33
2.3	Microscopic vs. Macroscopic	38
2.4	The Maxwell Equations in Matter	43
2.5	Quantum Limits and New Physics	46
2.6	SI Units	50
2.7	A Heuristic Derivation	51
	Sources, References, and Additional Reading	53
	Problems	55
3	Electrostatics	58
3.1	Introduction	58
3.2	Coulomb's Law	59
3.3	The Scalar Potential	60
3.4	Gauss' Law and Solid Angle	68
3.5	Electrostatic Potential Energy	74
3.6	Electrostatic Total Energy	76
3.7	The Electric Stress Tensor	81
	Sources, References, and Additional Reading	84
	Problems	85

viii	CONTENTS	
4	Electric Multipoles	90
4.1	Introduction	90
4.2	The Electric Dipole	92
4.3	Electric Dipole Layers	98
4.4	The Electric Quadrupole	102
4.5	Spherical Mathematics	106
4.6	Spherical and Azimuthal Multipoles	109
4.7	Primitive and Traceless Multipole Moments	116
	Sources, References, and Additional Reading	119
	Problems	121
5	Conducting Matter	126
5.1	Introduction	126
5.2	Electrostatic Induction	126
5.3	Screening and Shielding	133
5.4	Capacitance	134
5.5	The Energy of a System of Conductors	142
5.6	Forces on Conductors	143
5.7	Real Conductors	149
	Sources, References, and Additional Reading	151
	Problems	152
6	Dielectric Matter	158
6.1	Introduction	158
6.2	Polarization	158
6.3	The Field Produced by Polarized Matter	162
6.4	The Total Electric Field	165
6.5	Simple Dielectric Matter	167
6.6	The Physics of the Dielectric Constant	175
6.7	The Energy of Dielectric Matter	178
6.8	Forces on Dielectric Matter	184
	Sources, References, and Additional Reading	191
	Problems	193
7	Laplace's Equation	197
7.1	Introduction	197
7.2	Potential Theory	198
7.3	Uniqueness	199
7.4	Separation of Variables	201
7.5	Cartesian Symmetry	203
7.6	Azimuthal Symmetry	209
7.7	Spherical Symmetry	212
7.8	Cylindrical Symmetry	215
7.9	Polar Coordinates	218
7.10	The Complex Potential	221
7.11	A Variational Principle	226
	Sources, References, and Additional Reading	228
	Problems	229

	CONTENTS	іх
8	Poisson's Equation	236
8.1	Introduction	236
8.2	The Key Idea: Superposition	236
8.3	The Method of Images	237
8.4	The Green Function Method	250
8.5	The Dirichlet Green Function	252
8.6	The Complex Logarithm Potential	260
8.7	The Poisson-Boltzmann Equation	262
	Sources, References, and Additional Reading Problems	264 265
9	Steady Current	272
01	Introduction	
9.1	Current in Vacuum	272
93	Current in Matter	275
9.4	Potential Theory for Ohmic Matter	276
9.5	Electrical Resistance	277
9.6	Joule Heating	280
9.7	Electromotive Force	282
9.8	Current Sources	287
9.9	Diffusion Current: Fick's Law	291
	Sources, References, and Additional Reading	293
	Problems	294
10	Magnetostatics	301
10.1	Introduction	301
10.2	The Law of Biot and Savart	304
10.3	Ampère's Law	307
10.4	The Magnetic Scalar Potential	312
10.5	The Vector Potential	320
10.6	The Topology of Magnetic Field Lines	325
	Sources, References, and Additional Reading	328
	Problems	329
11	Magnetic Multipoles	336
11.1	Introduction	336
11.2	The Magnetic Dipole	337
11.3	Magnetic Dipole Layers	345
11.4	Exterior Multipoles	346
11.5	Interior Multipoles	353
11.6	Axially Symmetric Magnetic Fields	357
	Sources, Kejerences, and Additional Keading	359
	r rodiems	361
12	Magnetic Force and Energy	365
12.1	Introduction	365
12.2	Charged Particle Motion	366

x	CONTENTS	
12.3	The Force between Steady Currents	368
12.4	The Magnetic Dipole	372
12.5	The Magnetic Stress Tensor	381
12.6	Magnetostatic Total Energy	384
12.7	Magnetostatic Potential Energy	389
12.8	Inductance	394
	Sources, References, and Additional Reading	399
	Problems	401
13	Magnetic Matter	407
13.1	Introduction	407
13.2	Magnetization	407
13.3	The Field Produced by Magnetized Matter	412
13.4	Fictitious Magnetic Charge	415
13.5	The Total Magnetic Field	419
13.6	Simple Magnetic Matter	421
13.7	The Energy of Magnetic Matter	433
13.8	Forces on Magnetic Matter	435
13.9	Permanent Magnetic Matter	443
	Sources, References, and Additional Reading	447
	Problems	448
14	Dynamic and Quasistatic Fields	455
14.1	Introduction	455
14.2	The Ampère-Maxwell Law	456
14.3	Faraday's Law	460
14.4	Electromagnetic Induction	462
14.5	Slowly Time-Varying Charge in Vacuum	467
14.6	Slowly Time-Varying Current in Vacuum	470
14.7	Quasistatic Fields in Matter	472
14.8	Poor Conductors: Quasi-Electrostatics	473
14.9	Good Conductors: Quasi-Magnetostatics	475
14.10	The Skin Effect	477
14.11	Magnetic Diffusion	481
14.12	Eddy-Current Phenomena	483
14.13	AC Circuit Theory	486
	Sources, References, and Additional Redding	493
	Problems	494
15	General Electromagnetic Fields	501
15.1	Introduction	501
15.2	Symmetry	501
15.3	Electromagnetic Potentials	503
15.4	Conservation of Energy	507
15.5	Conservation of Linear Momentum	511
15.6	Conservation of Angular Momentum	516
15.7	The Center of Energy	519
15.8	Conservation Laws in Matter	522

	CONTENTS	xi
15.9	The Force on Isolated Matter	526
	Sources, References, and Additional Reading	529
	Problems	531
16	Waves in Vacuum	536
16.1	Introduction	536
16.2	The Wave Equation	537
16.3	Plane Waves	539
16.4	Polarization	545
16.5	Wave Packets	552
16.6	The Helmholtz Equation	557
16.7	Beam-Like Waves	558
16.8	Spherical Waves	565
16.9	Hertz Vectors	569
16.10	Forces on Particles in Free Fields	571
	Sources, References, and Additional Reading	575
	Problems	577
17	Waves in Simple Matter	584
17.1	Introduction	584
17.2	Plane Waves	584
17.3	Reflection and Refraction	588
17.4	Radiation Pressure	599
17.5	Layered Matter	602
17.6	Simple Conducting Matter	607
17.7	Anisotropic Matter	613
	Sources, References, and Additional Reading Problems	616 617
10		017
18	Waves in Dispersive Matter	624
18.1	Introduction	624
18.2	Frequency Dispersion	624
18.5	Energy in Dispersive Matter	627
18.4	Classical Models for Error particip	629
10.5	Waya Packets in Dispersive Metter	641
18.0	The Consequences of Causality	649
18.8	Spatial Dispersion	656
10.0	Sources, References, and Additional Reading	657
	Problems	659
19	Guided and Confined Waves	666
10.1	Introduction	600
19.1	Transmission Lines	000 667
19.2	Planar Conductors	672
19.4	Conducting Tubes	675
19.5	Dielectric Waveguides	687
19.6	Conducting Cavities	693
	-	

19.7	Dielectric Resonators	704
	Sources, References, and Additional Reading	706
	Problems	707
20	Retardation and Radiation	714
20.1	Introduction	714
20.2	Inhomogeneous Wave Equations	715
20.3	Retardation	719
20.4	The Time-Dependent Electric Dipole	727
20.5	Radiation	730
20.6	Thin-Wire Antennas	737
20.7	Cartesian Multipole Radiation	743
20.8	Spherical Multipole Radiation	755
20.9	Radiation in Matter	762
	Sources, References, and Additional Reading	765
	Problems	767
21	Scattering and Diffraction	775
21.1	Introduction	775
21.2	The Scattering Cross Section	776
21.3	Thomson Scattering	777
21.4	Rayleigh Scattering	782
21.5	Two Exactly Solvable Problems	783
21.6	Two Approximation Schemes	790
21.7	The Total Cross Section	793
21.8	Diffraction by a Planar Aperture	797
21.9	Generalized Optical Principles	807
	Sources, References, and Additional Reading	812
	Problems	814
22	Special Relativity	822
22.1	Introduction	822
22.2	Galileo's Relativity	823
22.3	Einstein's Relativity	825
22.4	The Lorentz Transformation	826
22.5	Four-Vectors	834
22.6	Electromagnetic Quantities	839
22.7	Covariant Electrodynamics	848
22.8	Matter in Uniform Motion	858
	Sources, References, and Additional Reading	863
	Problems	865
23	Fields from Moving Charges	870
23.1	Introduction	870
23.2	The Liénard-Wiechert Problem	870
23.3	Radiation in the Time Domain	880
23.4	Radiation in the Frequency Domain	886
23.5	Synchrotron Radiation	891