GUIDED EXPLORATIONS OF THE MECHANICS OF SOLIDS AND STRUCTURES

Strategies for Solving Unfamiliar Problems

This book tackles the question: How can an engineer with a powerful finite element program but modest background knowledge of mechanics solve unfamiliar problems?

Engineering educators will find this book to be a new and exciting approach to helping students engage with complex ideas. Practicing engineers who use finite element methods to solve problems in solids and structures will extend the range of problems they can solve as well as accelerate their learning on new problems.

This book’s special strengths include

- A thoroughly modern approach to learning and understanding mechanics problems
- Comprehensive coverage of a large collection of problems ranging from static to dynamic and from linear to nonlinear, applied to a variety of structures and components
- Accompanying software that is sophisticated and versatile and is available for free on the accompanying CD and from the book’s Web site (www.cambridge.org/doyle)
- Ability to complement any standard finite element textbook or course in solid and structural mechanics
- The use of simple models to understand complex problems

James F. Doyle is a professor in the School of Aeronautics and Astronautics at Purdue University. His main area of research is in experimental mechanics with an emphasis on the development of a new methodology for analyzing impact and wave propagation in complicated structures. The goal is to be able to extract the complete description of the wave and the dynamic system from limited experimental data. Special emphasis is placed on solving inverse problems by integrating experimental methods with computational methods (primarily finite element–based methods). He is a dedicated teacher and pedagogical innovator. He is the winner of the Frocht Award for Teaching and the Hetenyi Award for Research, both from the Society for Experimental Mechanics. Professor Doyle is a Fellow of the Society for Experimental Mechanics. This is his fifth book, after Propagation in Structures, Second Edition; Static and Dynamic Analysis of Structures; Nonlinear Analysis of Thin-Walled Structures; and Modern Experimental Stress Analysis.
Cambridge Aerospace Series

Editors: Wei Shyy and Michael J. Rycroft

1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
2. P. Berlin: The Geostationary Applications Satellite
3. M. J. T. Smith: Aircraft Noise
5. W. A. Mair and D. L. Birdsall: Aircraft Performance
7. M. J. Sidi: Spacecraft Dynamics and Control
8. J. D. Anderson: A History of Aerodynamics
10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
11. J. Fielding: Introduction to Aircraft Design
16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
20. C. Wagner, T. Hüttl, and P. Sagaut: Large-Eddy Simulation for Acoustics
25. C. Segal: The Scramjet Engine: Processes and Characteristics
26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
Guided Explorations of the Mechanics of Solids and Structures

STRATEGIES FOR SOLVING UNFAMILIAR PROBLEMS

James F. Doyle
Purdue University
This book is dedicated to ALL
who have shared the ARC
at the LBC.
Contents

Introduction .. page 1

1 QED the Computer Laboratory 5
 1.1 Brief Overview of the Mechanics of Structures 6
 1.2 Installing and Running QED 13
 1.3 Overview of QED 16
 1.4 Supporting Programs 30
 1.5 QED Guided Explorations 32

2 Static Analysis 35
 2.1 Deformation of Structural Members 36
 2.2 Stiffness Behavior of Thin-Walled Structures 49
 2.3 Equilibrium of Beam and Frame Structures 59
 2.4 Stress Analysis of Thin-Walled Structures 73
 2.5 Stress Analysis of a Ring 92
 2.6 Stress Concentrations and Singularities 102

3 Vibration of Structures 112
 3.1 Introduction to Vibrations 113
 3.2 Modes of Vibration 121
 3.3 Prestressed Structures 130
 3.4 Frequency Analysis of Signals 139
 3.5 Effect of Mass and Gravity on Vibrations 147
 3.6 Vibration of Shells 152

4 Wave Propagation 161
 4.1 Introduction to Wave Propagation 163
 4.2 General Exploration of Wave Speeds 173
 4.3 Dispersion of Waves 183
 4.4 Deep Waveguides 197
 4.5 Relation Between Waves and Vibrations 206
 4.6 Dynamic Stress Concentrations 213
5 Nonlinear Structural Mechanics ... 226
 5.1 Nonlinear Geometric Behavior of Structures 227
 5.2 Elastic-Plastic Response and Residual Stresses 246
 5.3 Rubber Elasticity .. 253
 5.4 Nonlinear Vibrations ... 264
 5.5 Nonlinear Vibrations Under Gravity 275
 5.6 Impact .. 283

6 Stability of the Equilibrium ... 297
 6.1 Introduction to Elastic Stability 298
 6.2 Eigenanalysis of Buckling 308
 6.3 Stability and Load Imperfections 328
 6.4 Elastic-Plastic Buckling 335
 6.5 Stability of Motion in the Large 349
 6.6 Dynamic Instability Under Follower Loads 364

7 Constructing Simple Analytical Models 376
 7.1 Fundamentals of Solid Mechanics 377
 7.2 Stationary Principles in Mechanics 386
 7.3 Models, Similitude, and Dimensional Analysis 397
 7.4 Some Simple Models With the Ritz Method 404
 7.5 Mechanical Models for Postbuckling 416
 7.6 Simple Models for Loadings 425
 7.7 QED’s Gallery of ODEs ... 435

References ... 439
Index ... 445
GUIDED EXPLORATIONS OF THE MECHANICS OF SOLIDS AND STRUCTURES