ELECTRICAL DYNAMICS OF THE DENDRITIC SPACE

The authors explain how the whole dendtritic arborization contributes to the generation of various output discharges and elucidate the mechanisms of the transfer function of all dendritic sites. Their alternative approach to conventional models introduces the notion of a functional dendritic space, and they have concentrated on a detailed spatial description of the electrical states at all dendritic sites when the dendrites operate. By analyzing the electrical dendritic space in which all the signals are processed, the authors provide tools to explore the spatial dimension of the transient events well known by electrophysiologists. They demonstrate the mechanisms by which the operating dendrites decide how, *in fine*, the distributed synaptic inputs generate various final output discharges. Their approach reveals the mechanisms by which individual dendritic geometry determines the sequence of action potentials that is the neuronal code. An accompanying NeuronViewer allows readers to monitor the simulation of operating dendritic arborization.

SERGEY M. KOROGOD is Professor and Head of Department of Experimental Physics at Dnipropetrovsk National University, and Head of Dnipropetrovsk Division, International Center for Molecular Physiology at the National Academy of Sciences of the Ukraine. He explores biophysical mechanisms relating cellular physical–chemical processes and geometry.

SUZANNE TYČ-DUMONT is Director of Research Emeritus at CNRS, Paris. She has been active since the early 1980s in the promotion of the notion of the dendritic shape as one of the most critical factors in the understanding of dendritic processing, and introduced computational tools for the quantification of the geometry of dendritic arborizations in her laboratory.

ELECTRICAL DYNAMICS OF THE DENDRITIC SPACE

SERGEY M. KOROGOD

SUZANNE TYČ-DUMONT

Cambridge University Press & Assessment 978-0-521-89677-1 — Electrical Dynamics of the Dendritic Space Sergiy Mikhailovich Korogod , Suzanne Tyč-Dumont Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521896771

© S. M. Korogod and S. Tyč-Dumont 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-89677-1 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-0-521-89677-1 — Electrical Dynamics of the Dendritic Space Sergiy Mikhailovich Korogod , Suzanne Tyč-Dumont Frontmatter <u>More Information</u>

Contents

	Preface				
1	Definition of the neuron				
	1.1	The biologist	1		
	1.2	The physicist	8		
	1.3	The physicist and the biologist	9		
		References	10		
2	3D geometry of dendritic arborizations		13		
	2.1	Brief historical background	13		
	2.2	Single neuron labelling	15		
	2.3	Dendritic quantification	17		
	2.4	Data quality and morphological noise	22		
	2.5	Models of neurons	25		
		References	31		
3	Basics in bioelectricity		37		
	3.1	Ions as carriers of current	37		
	3.2	Selective ion permeability of neuronal membrane	38		
	3.3	Ion pumps	39		
	3.4	Ion channels	40		
	3.5	Voltage dependence of membrane conductance	41		
	3.6	Effective equilibrium potential of multicomponent ion current	41		
	3.7	Membrane capacitance and capacitive current	42		
	3.8	External sources	43		
	3.9	Local current–voltage $(I-V)$ relations	43		
		Reference	46		
4	Cable	theory and dendrites	47		
	4.1	Dendrites as electrical cables	47		
	4.2	The cable equation	49		
	4.3	Additional conditions required for solution	53		

vi		Contents	
	4.4	Input-output (point-to-point) relations in dendritic cables	56
		References	57
5	Volta	ge transfer over dendrites	59
	5.1	Dendritic cables in the steady state	59
	5.2	Voltage transients in dendritic cables	62
6	Curre	nt transfer over dendrites	65
	6.1	Charge transfer ratio	65
	6.2	Somatopetal current transfer and somatofugal voltage spread	66
	6.3	Current transfer ratio for passive paths at different	
		boundary conditions	71
	6.4	Local electro-geometrical coupling in non-uniform paths	72
	6.5	Current transfer from distributed dendritic sources	75
		References	76
7	Elect	rical structure of an artificial dendritic path	77
	7.1	Electrical structure of passive paths with single-site inputs	79
	7.2	Electrical structure of paths with distributed tonic inputs	81
		References	94
8	Elect	rical structure of a bifurcation	95
	8.1	Theory for different configurations	95
	8.2	Electrical structure of passive branching paths with	
		single-site inputs	100
	8.3	Electrical structure of a bifurcation receiving distributed	
		tonic inputs	102
	8.4	Recapitulation and conclusions	111
		References	112
9	Geog	Geography of the dendritic space	
	9.1	Dendritic arborization in 3D and 2D representations	114
	9.2	Distinct 3D dendritic landscapes	118
	9.3	Digitized dendritic arborizations	121
		References	125
10	Elect	rical structures of biological dendrites	127
	10.1	Geometry of an example dendrite	127
	10.2	Passive dendrite with single-site inputs	129
	10.3	Dendrites with distributed inputs	130
	10.4	Reconfigurations of passive electrical structures	136
		References	139
11	Elect	rical structure of the whole arborization	141
	11.1	Organization of the spatial electrical profiles	141
	11.2	Robustness of the electrical bundles	150
	11.3	Dynamic reconfigurations of the whole electrical structure	152

Cambridge University Press & Assessment 978-0-521-89677-1 — Electrical Dynamics of the Dendritic Space Sergiy Mikhailovich Korogod , Suzanne Tyč-Dumont Frontmatter <u>More Information</u>

		Contents	vii
	11.4	Spatial aspects of reconfigured electrical structure	156
	11.5	Complexity of the whole arborization and its electrical domains	159
		References	160
12	Electi	ical structures in 3D dendritic space	161
	12.1	The 3D electrical structures of Purkinje neurons	162
	12.2	The 3D electrical structure of pyramidal neurons	164
	12.3	The 3D electrical structures of motoneurons	164
	12.4	High-efficiency domain of the motoneuronal arborizations	
		in 3D	166
	12.5	Bistable dendritic field	168
		References	171
13	Dend	ritic space as a coder of the temporal output patterns	173
	13.1	Terminology to describe the repertoire of neuronal discharges	173
	13.2	Geometry-induced features of Purkinje cell discharges	174
	13.3	Geometry-dependent repertoire of pyramidal cell activity	189
	13.4	Some general rules	193
		References	194
14	Concluding remarks		197
	14.1	Impact for interpretation of neuronal discharges	199
	14.2	The dancing dendrites	200
	14.3	Speculation for the future	200
		References	202
	Index		205
	<i><i>a i</i></i>		

Colour plate section is between pages 116–17.

Preface

Dear Reader,

We invite you to travel in space with us! This will be a very peculiar space: the dendritic space of neurons that is *the cosmos for neuroscientists*. It is mysterious and practically unexplored like the outer space we glimpse at in the sky. Curiously, we can further extend this analogy: the tools of astronomy can be turned from the sky to the microscope stage to explore shining brain stars, the neurons radiating their dendrites into the surrounding space. This was performed in the pioneering work by Paul Gogan and co-workers using a modified astronomical camera to image the microstructure of the dendritic membrane during the excitation of single live neurons in culture (see references in Chapter 14). The explorers of the dendritic space still have to invent the appropriate spacecrafts and technologies. As in cosmology, experimentation is limited, and mathematical and computer models are the only way of gaining insight into the nature of the dendritic space. The itinerary of our travel relies on these tools.

We start with a brief historical background to the dendritic problem and describe the origin of the structural data used for further morphometric and computer simulation studies of the dendritic arborizations (Chapters 1 and 2). Chapter 3 describes basic bioelectricity with emphasis on space. We show how charge carriers are separated in space and thus electric fields and currents are created across the neuronal membrane. An important generalization is that, despite multiplicity and diversity of channel types, the number of different types of current–voltage relations is restricted to three. Chapter 4 recapitulates the cable theory of the dendritic transfer properties with special focus on the terms of the cable equation which determine the electrical communication across the membrane and along the dendritic membrane. This issue is further developed in Chapters 5 and 6, specifying the voltage and current transfer along the dendrites. We highlight that the transfer maps provide an informative representation of the dendritic electrical structure. Chapters 7 and 8 explain how the electrical structures of an artificial dendritic path and of a branch bifurcation

Cambridge University Press & Assessment 978-0-521-89677-1 — Electrical Dynamics of the Dendritic Space Sergiy Mikhailovich Korogod , Suzanne Tyč-Dumont Frontmatter More Information

Х

Preface

are built and how they indicate electrical relations in different dimensions of the dendritic space that are the proximal-to-distal and the path-to-path relations. Next the critical role of metrical asymmetry of the dendritic branches becomes obvious. Chapter 9 navigates in the dendritic space of biological neurons and introduces our library of reconstructed cells providing specific examples of metrical asymmetry of complex dendritic arborizations. Chapter 10 explores the electrical structures of single biological dendrites as the basic elements for constructing the whole arborization. Here electrical features related to elementary structural heterogeneities present in random combinations in the biological dendrites are noticeable. The electrical structures of the whole reconstructed dendritic arborizations of different types of neurons are analyzed and classified in Chapters 11 and 12. Relations of the electrical structures related to size, complexity and asymmetry of the arborizations are explored. Finally, Chapter 13 considers the consequences of morphological and electrical structures of the dendritic arborizations for the generation of output discharge patterns. These spatial-temporal patterns indicate some new emerging rules by which the dendrites govern the whole cell activity.

This book results from more than 15 years of cooperation between French and Ukrainian laboratories: the Unit of Cellular Neurocybernetics of the CNRS in Marseille and the Laboratory of Biophysics and Bioelectronics, Dnipropetrovsk National University and Dnipropetrovsk Division of the International Center for Molecular Physiology, National Academy of Sciences of the Ukraine. It originated in the form of seminars, lectures, published papers and notes for students. We have benefited from innumerable discussions with students and colleagues. To acknowledge all of them personally is impossible but we wish to thank first our collaborators who have co-authored our published articles and who were directly involved in various aspects of our work at different periods between 1993 and 2007. This book would have never happened without them.

In the French team, we are specially grateful to Dr. Cesira Batini and Dr. Ginette Bossavit. We should like to pay tribute to Paul Gogan who initiated the quantification of dendritic geometry. His vision was far in advance of the impact of computer science in biology. He had foreseen what could be done by introducing high computational technology in our neurobiological laboratory. His knowledge of electrophysiology, his wide scientific background and his generous participation in our work make him an essential person to thank. We would also like to thank the technicians, secretaries, programmers and photographers of our laboratories for their generous assistance and invaluable help.

In the Ukrainian team, Yuri Ivanov, Irina Kopysova and Vladimir Sarana valuably participated at earlier stages of our joint work on the dendritic processing. We especially acknowledge the contribution of Dr. Iryna Kulagina, who is the coauthor of most of the results presented in this book, some of which have already

Preface

been published, as well as unpublished data in Chapter 13. Her thorough and creative work provided novel dynamic electrical maps of the dendritic space which look sunny and bear clear landmarks of the determinative role of geometry in spatial-temporal electrical phenomena in the dendrites. We appreciate the creative contribution by Valery Kukushka who developed the NeuronViewer, a tool for interactively displaying spatial-temporal dendritic activity described in Chapter 13. NeuronViewer is available at Cambridge University Press site (URL . . .). Scientific cooperation between our teams was efficiently supported by the French Embassy in Ukraine and we are deeply grateful for that.

We want to thank our friends and colleagues Dr. Elska Jankowska, Dr. John Lagnado, Dr. Bob Liberman, Dr. Hans Lüscher and Dr. Gerta Vrbova for reading some parts of the manuscript and for their comments, criticisms and encouragement.

Finally and importantly, we regret that we can only provide an incomplete picture of dendritic spatial processing, but we are happy to open this space for younger generations of researchers.

xi