Principles of Psychiatric Genetics
Contents

List of contributors vii
Preface xi

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Contribution of genetic epidemiology to our understanding of psychiatric disorders</td>
<td>1</td>
<td>Kathleen Ries Merikangas and Anibal Cravchik</td>
</tr>
<tr>
<td>2</td>
<td>A basic overview of contemporary human genetic analysis strategies</td>
<td>13</td>
<td>Ondrej Libiger and Nicholas J. Schork</td>
</tr>
<tr>
<td>3</td>
<td>DNA methods</td>
<td>23</td>
<td>David W. Craig</td>
</tr>
<tr>
<td>4</td>
<td>In silico analysis strategies and resources for psychiatric genetics research</td>
<td>34</td>
<td>Ali Torkamani, Trygve Bakken, and Nicholas J. Schork</td>
</tr>
<tr>
<td>5</td>
<td>Gene expression studies in psychiatric disorders</td>
<td>49</td>
<td>Alexander B. Niculescu, III</td>
</tr>
<tr>
<td>6</td>
<td>Pharmacogenetics in psychiatry</td>
<td>53</td>
<td>Falk W. Lohoff</td>
</tr>
<tr>
<td>7</td>
<td>Functional validation of candidate genetic susceptibility factors for major mental illnesses</td>
<td>69</td>
<td>Akira Sawa, Wanli W. Smith, Saurav Seshadri, Akiko Hayashi-Takagi, Hanna Jaaro-Peled, and Atsushi Kaniya</td>
</tr>
<tr>
<td>8</td>
<td>Epigenetic mechanisms in drug addiction and depression</td>
<td>79</td>
<td>William Renthal and Eric J. Nestler</td>
</tr>
<tr>
<td>9</td>
<td>Panic disorder</td>
<td>90</td>
<td>Ardesheer Talati and Myrna M. Weissman</td>
</tr>
<tr>
<td>10</td>
<td>The genetics of the phobic disorders and generalized anxiety disorder</td>
<td>112</td>
<td>Raymond R. Crowe</td>
</tr>
<tr>
<td>11</td>
<td>Genetic contributions to obsessive–compulsive disorder (OCD) and OCD-related disorders</td>
<td>121</td>
<td>Dennis L. Murphy, Pablo R. Moya, Jens R. Wendland, and Kiara Timpano</td>
</tr>
<tr>
<td>12</td>
<td>Post-traumatic stress disorder</td>
<td>134</td>
<td>Michael J. Lyons, Tyler Zink, and Karestan C. Koenen</td>
</tr>
<tr>
<td>13</td>
<td>Antisocial behavior: gene–environment interplay</td>
<td>145</td>
<td>Laura A. Baker, Catherine Tuvblad, Serena Bezdjian, and Adrian Raine</td>
</tr>
<tr>
<td>14</td>
<td>Learning disabilities</td>
<td>160</td>
<td>Shelley D. Smith</td>
</tr>
<tr>
<td>15</td>
<td>Attention-deficit hyperactivity disorder</td>
<td>168</td>
<td>Josephine Elia, Francesca Lantieri, Toshinobu Takeda, Xiaowu Gai, Peter S. White, Marcella Devoto, and Hakon Hakonarson</td>
</tr>
<tr>
<td>16</td>
<td>Autism and autism spectrum disorders</td>
<td>183</td>
<td>Daniel H. Geschwind and Maricela Alarcón</td>
</tr>
<tr>
<td>17</td>
<td>The genetics of bipolar disorder</td>
<td>196</td>
<td>John R. Kelso</td>
</tr>
<tr>
<td>18</td>
<td>The genetics of major depression</td>
<td>212</td>
<td>James B. Potash</td>
</tr>
<tr>
<td>19</td>
<td>The genetics of schizophrenia</td>
<td>230</td>
<td>Hugh M. D. Gurling and Andrew McQuillin</td>
</tr>
<tr>
<td>20</td>
<td>The genetics of anorexia and bulimia nervosa</td>
<td>262</td>
<td>Andrew W. Bergen, Jennifer Wessel, and Walter H. Kaye</td>
</tr>
<tr>
<td>21</td>
<td>Genetics and common human obesity</td>
<td>272</td>
<td>R. Arlen Price</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoholism</td>
<td>279</td>
</tr>
<tr>
<td>by Howard J. Edenberg</td>
<td></td>
</tr>
<tr>
<td>Nicotine dependence</td>
<td>287</td>
</tr>
<tr>
<td>by Sarah M. Hartz and Laura J. Bierut</td>
<td></td>
</tr>
<tr>
<td>Human molecular genetics of opioid addiction</td>
<td>297</td>
</tr>
<tr>
<td>by Mary Jeanne Kreek, Dmitri Proudnikov, David A. Nielsen, and Vadim Yuferov</td>
<td></td>
</tr>
<tr>
<td>Genetics of stimulant dependence</td>
<td>306</td>
</tr>
<tr>
<td>by Joseph F. Cubells and Yi-Lang Tang</td>
<td></td>
</tr>
<tr>
<td>Genetics of personality disorders</td>
<td>316</td>
</tr>
<tr>
<td>by C. Robert Cloninger</td>
<td></td>
</tr>
<tr>
<td>Ethical issues in behavioral genetics</td>
<td>324</td>
</tr>
<tr>
<td>by Stephen H. Dinwiddie, Jinger Hoop, and Elliot Gershon</td>
<td></td>
</tr>
<tr>
<td>Genetics of Tourette syndrome and related disorders</td>
<td>336</td>
</tr>
<tr>
<td>by Maria G. Motlagh, Thomas V. Fernandez, and James F. Leckman</td>
<td></td>
</tr>
<tr>
<td>Endophenotypes in psychiatric genetics</td>
<td>347</td>
</tr>
<tr>
<td>by Andrew C. Chen, Madhavi Rangaswamy, and Bernice Porjesz</td>
<td></td>
</tr>
<tr>
<td>Developmental disorders</td>
<td>363</td>
</tr>
<tr>
<td>by Craig A. Erickson, Khendra I. Peay, and Christopher J. McDougle</td>
<td></td>
</tr>
<tr>
<td>Alzheimer's disease</td>
<td>371</td>
</tr>
<tr>
<td>by Carlos Cruchaga, John S. K. Kauwe, and Alison M. Goate</td>
<td></td>
</tr>
</tbody>
</table>

Index 382

Color plate section is between pp. 204 and 205.
Contributors

Maricela Alarcón, PhD
Center for Autism Research and Treatment, Semel Institute of Neuroscience, Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA

Laura A. Baker, PhD
Department of Psychology, University of Southern California, Los Angeles, CA, USA

Trygve Bakken
The Scripps Translational Science Institute and The Department of Molecular and Experimental Medicine, The Scripps Research Institute; Graduate Program in Neurosciences and Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA

Serena Bezdjian
Department of Psychology, University of Southern California, Los Angeles, CA, USA

Andrew W. Bergen, PhD
Molecular Genetics Program, Center for Health Sciences, SRI International, Menlo Park, CA, USA

Laura J. Bierut, MD
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA

Andrew C. Chen, MD
Department of Psychiatry, Columbia University Medical Center College of Physicians and Surgeons, New York, NY, USA

C. Robert Cloninger, MD
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA

David W. Craig, PhD
The Translational Genomics Research Institute, Phoenix, AZ, USA

Anibal Cravchik, MD, PhD
Genetic Epidemiology Research Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

Raymond R. Crowe, MD
Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA

Carlos Cruchaga, PhD
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA

Joseph F. Cubells, MD, PhD
Departments of Human Genetics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA

Marcella Devoto, PhD
Division of Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Dipartimento di Medicina Sperimentale, University La Sapienza, Rome, Italy

Stephen H. Dinwiddie, MD
Department of Psychiatry and Behavioral Science, The University of Chicago Medical Center, Chicago, IL, USA

Howard J. Edenberg, PhD
Center for Medical Genomics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
List of contributors

Josephine Elia, MD
Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA, USA

Craig A. Erickson, MD
Department of Psychiatry, Indiana University School of Medicine; Christian Sarkine Autism Treatment Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN, USA

Thomas V. Fernandez, MD
Child Study Center, Yale University School of Medicine, New Haven, CT, USA

Xiaowu Gai, PhD
Department of Pharmacology, Loyola University, Chicago, IL, USA

Elliot Gershon, MD
Department of Psychiatry, The University of Chicago Medicine, Chicago, IL, USA

Daniel H. Geschwind, MD, PhD
Center for Autism Research and Treatment, Semel Institute of Neuroscience, Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, and Department of Human Genetics, University of California at Los Angeles, Los Angeles, CA, USA

Alison M. Goate, D.Phil
Departments of Psychiatry, Neurology, Alzheimer’s Disease Research Center, Genetics, and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA

Hugh M. D. Gurling, MD
Molecular Psychiatry Laboratory, Mental Health Sciences Unit, University College London, London, UK

Hakon Hakonarson, MD, PhD
Division of Pulmonary Medicine, Department of Pediatrics, The Center for Applied Genomics, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA, USA

Sarah M. Hartz, MD, PhD
Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA

Akiko Hayashi-Takagi, PhD
Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Jinger Hoop, MD, MFA
Edward Hines Jr. Veteran’s Administration Hospital, Hines, IL, USA

Hanna Jaaro-Peled, PhD
Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Atsushi Kamiya, MD, PhD
Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA

John S. K. Kauwe, PhD
Department of Biology, Brigham Young University, Provo, UT, USA

Walter H. Kaye, MD
University of California San Diego, Department of Psychiatry and Eating Disorder Research and Treatment Program, La Jolla, CA, USA

John R. Kelsoe, MD
Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, VA San Diego Healthcare System, La Jolla, CA, USA

Karestan C. Koenen, PhD
Harvard School of Public Health, Boston, MA, USA

Mary Jeanne Kreek, MD
The Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA

Francesca Lantieri, PhD
Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA

James F. Leckman, MD
Child Study Center and Departments of Psychiatry, Psychology, and Pediatrics, Yale University School of Medicine, New Haven, CT, USA

Ondrej Libiger, MA, PhD
The Scripps Translational Science Institute and Department of Molecular and Experimental Medicine, The Scripps Research Institute,
List of contributors

La Jolla, CA, USA; Lekarska Fakulta v Hradci Kralove, Charles University, Czech Republic

Falk W. Lohoff, MD
Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Michael J. Lyons, PhD
Department of Psychology, Boston University, Boston, MA, USA

Christopher J. McDougle, MD
Professor of Psychiatry and Pediatrics, Director of the Lurie Center for Autism, Massachusetts General Hospital and MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA

Andrew McQuillin, PhD
Molecular Psychiatry Laboratory, Research Department of Mental Health Sciences, University College London, London, UK

Kathleen Ries Merikangas, PhD
Genetic Epidemiology Research Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

Maria G. Motlagh, MD
Child Study Center, Yale University School of Medicine, New Haven, CT, USA

Pablo R. Moya, PhD
Laboratory of Clinical Science, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

Dennis L. Murphy, MD
Laboratory of Clinical Science, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

Eric J. Nestler, MD, PhD
Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA

Alexander B. Niculescu, III, MD, PhD
Department of Psychiatry, Indiana University School of Medicine; Indianapolis, IN, USA

David A. Nielsen, PhD
The Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA

Khendra I. Peay, MD
Department of Psychiatry, Indiana University School of Medicine; Christian Sarkine Autism Treatment Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN, USA

Bernice Porjesz, PhD
Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York, NY, USA

James B. Potash, MD, MPH
Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA

R. Arlen Price, PhD
University of Pennsylvania, Center for Neurobiology and Behavior, Translational Research Laboratories, Philadelphia, PA, USA

Dmitri Proudnikov, PhD
The Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, NY, USA

Adrian Raine, DPhil
Departments of Criminology, Psychiatry, and Psychology, Jerry Lee Center of Criminology, University of Pennsylvania, Philadelphia, PA, USA

Madhavi Rangaswamy, PhD
Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, New York, USA

William Renthal, MD, PhD
Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA

Akira Sawa, MD, PhD
Departments of Psychiatry, Neuroscience, Cellular and Molecular Medicine, Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Nicholas J. Schork, PhD
The Scripps Translational Science Institute and The Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
List of contributors

Saurav Seshadri
Department of Psychiatry, Johns Hopkins University
School of Medicine, Baltimore, MD, USA

Shelley D. Smith, PhD, FACMG
University of Nebraska Medical Center, Munroe Meyer Institute for Genetics and Rehabilitation,
Omaha, NE, USA

Wanli W. Smith, MD, PhD
Department of Psychiatry, Johns Hopkins University
School of Medicine, Baltimore, MD, USA

Toshinobu Takeda, MD, PhD
Department of Child and Adolescent Psychiatry,
The Children’s Hospital of Philadelphia,
Philadelphia, PA, USA; Department of Psychiatry,
Ryukoku University, Kyoto, Japan

Ardeshir Talati, PhD
Columbia University and New York State Psychiatric Institute, New York, NY, USA

Yi-Lang Tang, MD, PhD
Department of Psychiatry and Behavioral Sciences,
Emory University School of Medicine, Atlanta, GA, USA

Kiara Timpano, PhD
University of Miami, Coral Gables, FL, USA

Ali Torkamani, PhD
The Scripps Translational Science Institute and The Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA

Catherine Tuvblad, PhD
Department of Psychology, University of Southern California, Los Angeles, CA, USA

Myrna M. Weissman, PhD
Columbia University and New York State Psychiatric Institute, New York, NY, USA

Jens R. Wendland, MD
Laboratory of Clinical Science, and Genetic Basis of Mood and Anxiety Disorders Section,
National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

Jennifer Wessel, PhD
Molecular Genetics Program, Center for Health Sciences, SRI International, Menlo Park, CA; Department of Public Health, Indiana University School of Medicine, Indianapolis, IN, USA

Peter S. White, PhD
Department of Pediatrics, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA, USA

Vadim Yuferov, PhD
The Laboratory of the Biology of Addictive Diseases,
Rockefeller University, New York, NY, USA

Tyler Zink
Department of Psychology, Boston University, Boston, MA, USA
The major psychiatric disorders are common illnesses with complex origins in gene–environment interactions. As is the case with most medical diseases, such as diabetes and hypertension, genetic factors for psychiatric disorders are composed of many common alleles, each with a small effect on risk. Additionally, there are many rare alleles, including copy number variants (CNVs), with larger effects on risk.

Despite this complex picture, substantial progress has been made in identification of individual risk alleles, through various molecular approaches, including linkage and association, studies of epigenetic factors, and recently direct sequencing of DNA from affected persons. It is the intent of the contributors and editors to describe these recent molecular advances, in the context of the genetic epidemiology (population, family and twin studies) and our knowledge of the phenomenology and course of illness of psychiatric disorders.

This book is organized in chapters according to the current nosology of psychiatric disorders, but the reader should not conclude that this nomenclature is based on genetic, epigenetic, neurobiologic, or environmental influences. The current nosology is based primarily on acute signs and symptoms, few of which are “pathognomonic”. Individuals with patterns of these signs and symptoms are categorized as “having” schizophrenia, for example, but the term “schizophrenia” undoubtedly refers to a very heterogeneous group of brain disorders which share some acute signs and symptoms and course of illness variables. In the future, it is expected that the current nosology will be transformed into one which reflects knowledge of the neurobiological and experiential origins of these groups of heterogeneous disorders. It is anticipated that new diagnostic tools and therapeutic agents will result from this expanded molecular knowledge.

While this book is, by necessity, a picture in time of current knowledge, the rapidly advancing technology of DNA sequencing is likely to produce a multitude of new discoveries in the near future. During the past decade, the cost of sequencing a human genome has fallen from ~ $1 000 000 000 USD to ~ $5000 USD, and the “thousand dollar genome” is widely predicted. This will allow for the sequencing of thousands of affected individuals within each category of psychiatric disorder. Analysis of this sequence information will permit the development of a catalogue of common and rare genetic variants that increase risk for these diseases. Studies of gene expression in post-mortem brain samples and in living blood and skin tissue from affected persons will enable catalogues of epigenetic events to be developed as well. These advances in genetics and epigenetics should permit an explosion of knowledge concerning the genetic and environmental risks for psychiatric disorders.

It is now possible to develop and culture neurons in the laboratory, from easily obtained skin or blood cells of persons with a psychiatric disorder. This should allow for an unprecedented correlation of neuronal phenotype to genotype on a scale we can only imagine. There will be the potential to characterize in beautiful detail the electrophysiologic, morphologic, and neurochemical characteristics of these neurons from genetically defined origins. This should permit discovery of specific neuronal abnormalities. That would enable the targeting of therapeutic agents to pathophysiology, even if that pathophysiology is unique to an individual person or family.

The book you have before you should be seen as a window to that day in the future when such targeted, individualized therapies are used by doctors and patients around the world. We have designed Principles of Psychiatric Genetics to be useful to investigators in related areas, including Psychiatry, Human Genetics, and Neurobiology. However we also expect that it will be of value to practicing clinicians who
Preface

Wish to understand the sometimes confusing and contradictory reports of discoveries in the media. Is there a blood test for bipolar disorder? Has “a gene” been identified for alcohol addiction? Is there a genetic test for the proper treatment for a patient with schizophrenia? What new drugs may we expect for Alzheimer’s disease?

Implicit in the foregoing discussion is a critical message for every reader of this book: genetic abnormalities are not immutable; they are treatable. Each genome represents a program for the body and the brain, but it is not destiny. In fact genetic programs are altered in their expression by the food we eat, the medicine we take, and by everyday experience. The finished product of a human life is a massively complex combination of the genetic program (which in itself does not change, except for mutation) and the effects of our experience, beginning with the intrauterine environment. Given this complexity, it is remarkable that genetic signals are even detectable in behavioral disorders, and yet they are. But one should never expect them to be constant, or unchangeable.

Principles of Psychiatric Genetics should be of interest to every mental health professional in training. All those who wish to become psychiatrists, psychologists, and counselors during the twenty-first century should know about the field that we describe, because it will affect your practice profoundly. Do we have a blood test for bipolar disorder? No, not today (despite what you may read on the internet). But such tests are not far in the future. When they arrive, they will likely be based on arrays that examine multiple gene variants and biological pathways in a single test. Those of you beginning practice today will likely send your patients for such tests. They will be designed based on some of the Principles in this book. The other questions above may be answered similarly.

There are clues to the answers in the appropriate chapters in this book.

Because the genetic and epigenetic variants responsible for these disorders are not fully available today, we are titling this book with the term Principles. The details of this expanding field will change daily over the coming years. The pace of discovery in the laboratory is daunting, and to remain current requires monitoring several hundred journals in print and/or online (consult the bibliographies in this book for examples). However, the core areas of psychiatry and human genetics are somewhat more constant.

You will notice that each chapter on a disease refers to epidemiology, twin and family studies, and linkage and association. Some disease-centered chapters also refer to epigenetic studies, bioinformatic studies, and drug development. There are special chapters in the first section of the book on each of these methodological areas. These have been prepared by subspecialty experts in psychiatric genetics and will be useful in interpreting the disease-centered chapters and also the journal literature in these areas.

Each disease chapter utilizes the methods described and then provides an up-to-date summary of where we stand now in identifying specific genetic influences on that trait or traits. Disease chapters also generally provide an overview of the symptoms, signs, and life course of the condition described. We have concentrated on those conditions usually treated by psychiatrists and other mental health professionals, but we are aware of the similarities in origin and course of other neuropsychiatric conditions that may be more frequently seen by pediatricians or neurologists (i.e. tuberous sclerosis, seizure disorders, or vascular dementia). For a more general reference on medical genetics in clinical practice, we would refer the reader to the online Mendelian Inheritance in Man by McKusick and collaborators.

As editors of this volume, we are humbled by the contributions of those who have gone before us in defining the field of Psychiatric Genetics. We would like to thank our mentor and longtime collaborator Elliot Gershon, who decades ago taught us the Principles in this volume. Others who influenced our approach to the issues in this book include Theodore Reich, Seymour Kety, George Winokur, Irving Gottesmann, Ming Tsuang, and Robert Cloninger, among others. We thank our contributing authors for their insight, their industry, their patience, and their trust that our shared effort would result in a book that they and others would admire. We appreciate the indulgence of our colleagues and families with the time this task took away from other activities. In this regard we thank Patricia Nurnberger and Christine Berrettini most of all. Finally we thank the patients and families who continue to teach us in our clinics every day. By this book, may we provide a stepping stone to better and more productive lives for you . . .