

Index

ABCB5 drug efflux transporter, 40-41 Asymmetric Enhancer (ASE) expression in melanoma stem cells ABCG2⁺ Du145 cells ABCG2 MDR transporter, 22, 40 AC133 monoclonal antibody, 4 activins (TGF- β –related proteins), 140–141 acute lymphoblastic leukemias (ALLs) identical twin studies, 96 LSC populations in, 94 acute myeloid leukemia (AML), 3, 17, 72, 75-76. See also leukemic stem cells CD34+CD38- cells, 2, 5, 94 first CSCs isolation from, 17 FLT3 testing for, 76 lesion classes I/II, 75 response to cyclic chemotherapy, 77-78 stages of maturation arrest, 72 21-kDa guanine-nucleotide binding protein mutation, 76 acute promyeloid leukemia (APL) retinoic acid (RA) treatment for, 74-75 stages of maturation arrest, 72 ADAM (A Disintegrin And Metalloproteinase) mediated cleaveage, 133 Al-Hajj, M., 7-9 all-trans-retinoic acid (ATRA) for acute promyeloid leukemia (APL), 75 induction of differentiation of undifferentiated, immortalized embryonal carcinoma cells, 71 androgen-dependent LAPC9 PCa xenograft tumors, 22 antiangiogenic therapies, 69 anti-CD44 activating antibody (H90), 98 Armstrong, Lance. See teratocarcinomas asymmetric cell division. See also Notch cell signaling pathway; Wnt signaling pathway four steps of, 148 Notch/Wnt signaling regulation of/regulation by, 139-140 Numb protein distribution and, 36 Par6 polarity protein and, 149–150 self-renewal via, 36, 128 and stem cell aging, 148-150

Aurora kinase A (NF-kB activator), 57 basal cell carcinoma (BCC), 114 cyclopamine, topical administration, 114 HH/GLI signaling and, 117-118 basal-like carcinoma (breast cancer subtype), 50 basal-like phenotype of breast cancer stem cells, 51 of (normal) mammary gland stem cells, 50 basic helix-loop-helix (bHLH) transcription repressors, of the hairy/enhancer-of-split-related (H/Espl) family, 141 Bc12 null mouse, hair graying (murine model) study, 33 BCR-ABL translocation, in chronic myeloid leukemia (CML), 95 Beard, C., 2 benign cells, transformation from benign cells, 70 benign prostatic hyperplasia (BPH), 21 β -catechin. See also Wnt/ β -catechin cell signaling pathway activation of Notch signaling mediation, 36 activation of Wnt1 signaling, 37 E-Cadherin and, 55, 81 hypoxia survival and, 59 inhibition by Axin overexpression, 97 interaction with HIF-1 α , 57 localization in β -catenin transgenic mice, 56 mRNA expression prostate tumors and, 23 targeting of CK5, CD44, Jagged-1, CA-IX, 55-56 BH3 mimetics, 100 Bhatt, R. I., 3 Bissell, M. J. BMI-1 oncogene-driven pathway, 82 BMI-1 stem cell renewal factor, 40, 117 BMP receptor IA gene, 38-39 bone morphogenetic proteins (BMPs) and human ES cells ectodermal/mesodermal differentiation signal conferred by, 141

bone morphogenetic proteins (cont.) inhibition of embryonic ventricular zone	cancer stem cell–directed therapy. See also Notch cell signaling pathway, as cancer
progenitor cells, 142	therapeutic target
promotion of hematopoietic specification,	actions necessary for success, 69
differentiation, and proliferation of, 142	breast cancer, 81
interplay with Hedgehog, Notch, Wnt	cancer stem cell signals, 80-81
pathways, 146–148	developmental difficulties, 77
maintenance of undifferentiated ES cells,	Hedgehog/GLI signaling and, 109, 118–120
through BMP Smads activation, 141	Her-2/Neu, 81–82
role in stem cell compartments of the colon,	inhibition of CST signaling pathways, 80
144	resistance to
tumor stroma-derived, 38, 80-81	stem cell phenotype association, 59
Bonnet, D., 94	by tumor-initiating cells, x
brain cancer, 3, 7	"stemness" and outcome predictions, 77
BRCA-I mutation carrier women, 50	targeting of Notch signaling, 132
breast cancer. See also SNAI2 gene expression	Wnt, 81
basal-like carcinoma subtype, 50	cancer stem cells (CSCs) 16-18 . See also prostate
BMI-1 role in, 82	cancer stem cells
cancer stem cell-directed therapy for, 81	cell lineages, 69-71
CD44 ⁺ CD24 ⁻ cells, 8	chemotherapy resistance of, 77, 129
CSCs identification, 2	differentiating agents, the environment and, 81
ductal breast carcinoma xenografts, 51	Hedgehog/GLI signaling in, 114–118
EGFR upregulation as Her-2/neu (c-erb-B2), 81	historical background, 2
HH/GLI-signaling and, 114	hypothesis of
IL-6/SNAI2 upregulation, 56	cancer stem cell hypothesis, 1–2, 17
mesenchymal breast tumors, 55	"embryonal rest" hypothesis, 2
SP isolation from, 3, 8	stochastic hypothesis, ix
Wnt-7b downregulation in, 81 breast cancer stem cells	identification of
	cell surface markers, 4–5
ABCG2 (ATP ABC transporter) and, 77	culture of nonadherent spheres, 5–6
basal-like phenotype of, 51	phenotypic assays, 17
Notch-3 importance for survival of, 53–54	side populations (SP), 3–4
Wnt pathway as gene therapy target of, 81	inhibition of
5'-bromo-deoxyuridine (BrdU), 17	delivery of iRNA, 83–85
Brunschwig, A., 2	inhibitory RNA, 83
	molecular inhibitors, 85–86
CA-IX 1 gene	oligonucleotides, 83
β -catenin targeting of, 55–56	Notch signaling in, 128–129
IL-6 upregulation of, 52–53	"poised" lineage predicting genes in, 152–153
CA-IX. See carbonic anhydrase isoenzyme-IX	properties and characteristics of
(CA-IX)	clonogenicity in vitro, 16
cancer cells hierarchy	self-renewal. See (self-renewal of cancer stem
leukemia/CD34+CD38- cells, 2, 5, 94-95	cells)
cancers. See also breast cancer; colon cancer;	tumor heterogeneity, establishment of, 9
cutaneous melanoma; gastrointestinal	tumorigenicity, 6–7, 17
cancer; Gorlin syndrome; leukemias;	in vivo, 16
nasopharyngeal carcinoma; nonmelanoma	quiescent (dormant) cancer cells vs., 78-79
skin cancers; ovarian cancer; pancreatic	self-renewal/differentiation potential of, 129
cancer; prostate cancer (PCa);	carbonic anhydrase isoenzyme-IX (CA-IX), 49
teratocarcinomas; thyroid cancer	Casein Kinase I (CKI), 111–112
Bcl-xl upregulation in, 100	CD20 melanoma marker, 34
causes/mechanism of (hypotheses), ix, 1, 36,	CD33 expression in LSCs (from AML patients), 98
109	CD34+CD38-/CD34+CD38+ cells 2, 5 . See also
cell lineages and, 69-71, 79	hematopoietic stem cells (HSCs); leukemic
Hedgehog/GLI signal transduction and	stem cells
development of, 113–114	$CD44^+/\alpha 2\beta 1^{\text{high}}/CD133^+$ cells, 23
NF-κB activation, 99–100	CD44 ⁺ CD24 ⁻ cells (of breast cancer), 6, 8–9
reason for eradication failures, 40	CD44 expression in CD34+CD38- cells (from
reformation of therapy-resistant CSCs, 69	AML), 98
as a "stem cell disease," 54.10	CD44+ (hyaluronan receptor CD44) gene, 51
stem-cell-like nature of	in breast cancer stem cells, 57

CD44 glycoprotein (cell surface marker), 4	colony initiation in vitro, 2
β -catenin targeting of, 55–56	comparative genomic hybridization (CGH), of
expression, by human prostatic basal cells,	melanoma stem cells, 35-36
22–23	Conheim, Julius, 2
CD123 (IL-3 receptor alpha) phenotypic marker	CSCs. See cancer stem cells (CSCs)
in LSCs, 97–98	Cunha, G. R., 20–21
CD133 $^{+}/\alpha 2\beta 1^{+}$ cells, 20	cutaneous melanoma (defined), 31
CD133 ⁺ cells, 5	CXCR4 (fusin) chemokine (CXC) receptor, for
CD133 neuroectodermal tumor marker.See	SFF-1 (CXCL12), 98
Prominin-1 (CD133) cell surface	cyclopamine (SMOH antagonist), 114, 118
marker	Cytokeratin 5/6 (CK5/6), overexpression of, 49
CD138 (cell surface marker), 5	-,
cell lineages and cancer, 69–71, 79 . See also	Decapentaplegic (Dpp), 149
transit-amplifying cells	Delta-like (D111, D113, D114) notch ligands,
cell surface markers, 4–5	129–130, 132
CD20, 34	Denekamp, J., 78
CD34+CD38-, 2, 5, 101	dibutyryl-cAMP, with RA, 71
CD44+CD24-, 6	Dick, J. E., 94
CD44 glycoprotein, 4, 22–23, 55–56, 101	Dickkopf (DKK) gene family, 145–146
CD94, 101 CD96, 101	differentiation theory
	•
CD123, 101	of leukemia, 69, 73
CD138, 5	stemness and, 70–71
CLL-1, 101	of teratocarcinoma, 69, 71–72
drawbacks to usage, 5	dihydrotestosterone (DHT), conversion from
Prominin-1 (CD133), 4, 34–35, 40	testosterone, 18
Sca-1 (Stem Cell Antigen-1), 20	DKK3. See Reduced Expression in Immortalized
somatic SCs and, 18	Cells (REIC)
cellular hierarchy, description, 15–16	DKK gene family. See Dickkopf (DKK) gene
central nervous system (CNS), sphere formation	family
by CSCs, 5	DNA analog labeling, 17
c-Fos/c-Jun mediated transcription,	Dontu, G., 148
71	Drosophila
chemotherapy	β -spectrin phenotype, 143–144
action on proliferating cancer	Elav protein, 146
transit-amplifying cells, 69	Lgl secretion of Decapentaplegic, 149
with ATRLA treatment, for APL, 75	musashi in nucleus of, 146
CD44+/MS generating cells presence in breast	Numb regulation of Notch signal pathway,
cancer after, 58	135, 149
cisplatin-based cytoxic, for teratocarcinoma, 71	Ttk69/p21 ^{Cip1} blocking by musashi, 147
cyclic, for AML, 77–78	drug resistance of stem cells, 77
with FLT3, for pediatric AML patients, 76	ductal breast carcinoma xenografts, 51
resistance of CSCs to, 129	ductal carcinoma in situ (DCIS)
chronic myeloid leukemia (CML), 73-74	
BCR-ABL translocation/chronic phase patients,	E3 ubiquitin ligase. See Itch (E3 ubiquitin ligase)
95	EGFr expression (in mammary gland basal-like
CD44 mice studies, 98	phenotype), 50
G-6-PD studies in patients with, 94	MS survival association with, 54
imatinib, blocking effect in, 73–74	Notch-3 gene crosstalk with, 53-54
Philadelphia chromosome in, 73, 94	Elav orthologs (mammalian), 146
stages of maturation arrest, 72	embryogenesis, 15
cisplatin-based cytoxic chemotherapy, for	embryonal carcinoma, 71
teratocarcinoma, 71	"embryonal rest" hypothesis (Virchow), 2
CK5/6 expression (in mammary gland basal-like	embryonic stem cells (ESCs), 15 . See also human
phenotype), 50	embryonic stem cells (hESCs)
β -catenin targeting of, 55–56	cell markers derived from, 4, 33
Clevers, H., 144	
CLL-1/CD96 phenotypic markers, in LSCs (from	differentiation/development of, 128
CLL-1/CD96 phenotypic markers, in LSCs (from AML patients), 98	differentiation/development of, 128 lentiviral vectors and differentiation of, 84
AML patients), 98	differentiation/development of, 128 lentiviral vectors and differentiation of, 84 TGF- β family signaling in, 140–141
	differentiation/development of, 128 lentiviral vectors and differentiation of, 84

166 Index

epidermal growth factor receptor (EGFR), 49 characteristics of, 110 promotion of neural stem cells, 113 embryonic development/adult organism tasks, upregulation as Her-2/neu in breast cancer, 81 110 epithelial tumors. See prostate cancer (PCa) glioblastoma multiforme and, 116-117 ERα expression. See Estrogen Receptor alpha GLI zinc finger transcription factors, 110-111 Gorlin syndrome and, 114 $(ER\alpha)$ expression Estrogen Receptor alpha (ERα) expression, 49-50 implication in stem/cancer cell activation, 115 extracellular receptor kinase (ERK), 52-53 influence of intraflagellar transport proteins (IFT) on, 110-111 Fang, D., 35 inhibition of, in cancer therapy, 118-120 interactive pathways of, 120 Fialkow, P. J., 94 medulloblastoma and, 115-116 Fine, H. A. 5'-bromo-deoxyuridine (BrdU), 17 multiple myeloma (MM) and, 117 Flt3 (FMS-like tyrosine kinase), 99 in stem and cancer stem cells, 114-118 FLT3. See FMS-like receptor tyrosine kinase 3 stimulating function of hair follicle stem cells, Fluorescence Activated Cell Sorter (FACS) 115 analysis, 22, 35-36 synergistic actions of, 115 FMS-like receptor tyrosine kinase 3 (FLT3), testing hematopoietic stem cells (HSCs) for AML, 76 $CD34^{+}/CD38^{-}$ subpopulation, 94–95 frank leukemia, from leukemic stem cells, 96 maintenance by Wnt function, 145 role of, 93 Frizzled-5 (Wnt5a receptor), 38 shared markers (CD34+/CD38-) with LSCs, 96 G-6-PD studies. See glucose-6-phosphate TGF- β family members in, 142–143 hepatocellular carcinoma, 3, 8, 144 dehydrogenase (G-6-PD) studies gastrointestinal tissues and cancers, 81, 143-144 Her-2/Neu, and cancer stem cell-directed Gene Expression Omnibus (GEO), 100-101 therapy, 81–82 Gli2-induced tumors, 118 hESCs. See human embryonic stem cells (hESCs) glioblastoma multiforme, 116-117 hierarchy of cancer cells glioblastoma stem cells, 34-35, 38 PCa lineage, 23 GLI zinc finger transcription factors, 110-111 HIF- 1α gene glucose-6-phosphate dehydrogenase (G-6-PD) NF-kB triggering of, 57 studies, 94 Stat-3 upregulation activation of, 57 Glycogen Synthase Kinase 3 beta (GSK3 β), hTERT immortalized HPCa-derived epithelial cell 111-112 lines, 23 Goodell, M. A., 3 ³H-thymidine/5'-bromo-deoxyuridine, 17 Gorlin syndrome, 114 Grichnik, J. M., 35 identification of cancer stem cells GSK3-beta inhibitors cell surface markers (See cell surface markers) culture of nonadherent spheres, 5-6 musashi induction of, 147 phosphorylation role of, 111-112 side populations (SP), 3-4 TDZD-8 vs., 100 IFT. See intraflagellar transport proteins (IFT) Wnt pathway activation by, 145 IL-6 (interleukin-6), 49, 51-55 Gupta, P. B., 39 MS expression of, 52 Notch-3 interplay with, 54-55 H90 (anti-CD44 activating antibody), 98 promotion of xenograft tumors, 52, 57 hair graying (murine model) studies, 33 upregulation in breast cancer, 56-57 Hedgehog cell signal transduction, 24, 37-38, imatinib, blocking effect in CML, 73-74 immunofluorescence-based cell sorting interplay with Wnt, BMP, Notch pathways, of ABCB5 cells, 41 146-148 for ABCG2 MDR transporter, 22 Numb regulation of, 36 for CD44+ cells (from xenograft tumors), 22 regulation of leukemia stem cells (LSCs), 101 for CD133/ABCB5/2% of G3361 melanoma Hedgehog/GLI (HH/GLI) signal transduction. See also Gorlin syndrome; Patched (PTRCH); of CD133 cells (from melanoma cells), 35, 41 Resistance, Nodulation, Division (RND) hESCs expression of Cripto-1 family members; Smoothened (SMOH); inhibition of cancer stem cells (CSCs) delivery of iRNA, 83-85 Sonic-Hedgehog (SHH) pathway

inhibitory RNA, 83

oligonucleotides, 83

molecular inhibitors, 85-86

BMI-1 and, 117

actions of GLI proteins, 111-113

and cancer development, 113-114

Index 167

inhibitory RNA (iRNA), 83-85 intraflagellar transport proteins (IFT), influence on HH/GLI signaling, 110-111 Itch (E3 ubiquitin ligase), 134-135 Jagged-1 gene, 49 β -catenin targeting of, 55–56 IL-6 upregulation of, 52–53 lung cancer overexpression in LSCs from AML patients, 101 Jagged-2 gene Janus family kinase (JFK), 80-81 karyotyping, of melanoma stem cells, 35-36 keratinocyte (hair root/sheath) progenitor cells, 38-39 Kern, S. E., 79 Kit melanocyte developmental marker, 32 Kobielak, K., 38 LAPC9 PCa (androgen dependent) xenograft tumors, 22 Lapidot, T., 94 Lef1 melanocyte developmental marker, 32 defined, 49-50 leukemias. See also acute myeloid leukemia (AML); acute promyeloid leukemia (APL); 51, 54 chronic myeloid leukemia (CML); promyelocytic leukemia (PML) CSCs identification, x, 2 described, 72-73 differentiation therapy of, 69, 73 mTOR necessity for survival, 99 regrowth of, 76-77 SP isolation from, 3 leukemia stem cells (LSCs). See also acute myeloid leukemia (AML) activated survival pathways, 97 cell of origin models, 95-96 cellular/molecular analysis of, 96-97 disorder) clinical implications diagnostic approach considerations, 101-102 remission bone marrow evaluation, 102-103 frank leukemia from, 96 identical twin studies, 96 identification of, in human leukemias, 94 melanomas Notch/Hedgehog/Wnt signaling pathway regulation of, 101 shared markers (CD34+/CD38-) with HSCs, 96 therapeutic response of, 77-78 leukemia stem cells (LSCs), therapy molecular targets 33-34 Flt3 (FMS-like tyrosine kinase), 99 NF-κB transcription factor, 99–100 PI3K (phosphatidyl-inositol 3 kinase), 99 other approaches CD20 marker, 34 BH3 mimetics, 100 in silico screening in GEO, 100-101 TDZD-8, 100 phenotypic markers CD33 expression, 98 CD44 expression, 98

CD123 (IL-3 receptor alpha), 97-98 CLL-1/CD96, 98 CXCR4 (fusin), 98 leukemic blast cells, 96 lobuloalveolar hyperplasia, 81 loco-regional disease, cure rate, 31 long-term label-retaining cells (LRCs), 17 HH/GLI-signaling and, 114, 117 self-renewal assays from isolated CSCs, 8 SP isolation from. 3 lymphovascular tumor emboli, 56 malignant cells, transformation to benign, 70 mammary gland stem cells (normal), 50 inflammatory/hypoxic profile in regulation of, chemoresistance as consequence, 58-60 Wnt/ β -catenin cell activation and, 145 mammospheres (MS) BRCA-I gene vitro knockdown and, 50 breast CSC phenotype regulation in, 51 from ductal breast carcinoma (characteristics), EGFr and survival of, 54 IL-6/gp130 expressed by, 52 increased Notch-3 gene expression, 148 invasive capability promoted by SNAI2 gene expression, 56 SNAI2 gene expression in, 50, 55-56 medulloblastoma, 34-35, 114 CD133 expression in, 34-35 HH/GLI signal transduction and, 115-116 MEK/Extracellular Signal-Regulated Kinase (ERK) pathway, 112 melanocytes. See also vitiligo (depigmentation developmental markers, 32-33 hair graying (murine model) studies, 33 skin/hair, physiological maintenance of, 32-33 melanocyte stem cell, adult, 32-33 Dct-lacZ transgenic mice studies, 32 CD20 marker, 34 CD133 expression, 35 detection of BMI-1 expression in, 40 origination (hypothesis) of, 31-32 phenotypic heterogeneity in vitro and in vivo, survival regulation by SHH-GLI signaling, 37 "vascular mimicry" by, 140 melanoma stem cells CD133 marker, 4, 34-35, 40 . See also (Prominin-1 cell surface marker) Dct-lacZ transgenic mice studies, 32 developmental gene expression, 34 dormant, role in metastasis/therapeutic resistance of melanoma stem cells, 39-41

168 Index

melanoma stem cells (cont.) Nestin stem cell marker, 34-35, 40 embryonic stem cell markers, 33 neural crest stem cells, 18, 32, 34 FACS analysis, for identification, 35-36 Slug regulation of, 39-40 hair graying mouse models, 33 neural stem cells, 38, 115 karyotyping/CGH, 35-36 EGF/Sonic HH promotion of, 113 niche of, 38-39 HH/GLI persistent activation of, 116 Nodal knockdown cell differentiation, 39 TGF- β family members in, 142 self-renewal/transdifferentiation properties, neuroectodermal tumors, 34-35 NF-κB transcription factor, 57, 99–100 33-36 spheroid cells, 34 NICD. See Notch Intracellular cytoplasmic stemness/metastatic capacity of, 40 domain (NICD) mesenchymal breast tumors, 55 metastasis epithelial adult SCs, 32 clonal selection model, 39-40 melanoma SCs. 38-39 defined, 39 somatic SCs, 16 Slug requirement for, 40 Nishimura, E. K., 33, 37 stemness/melanoma cell correlation study, 40 Nodal embryonic factor, knockdown breast mice models carcinoma cell/melanoma cell BRCA-I mutation defective, 50 differentiation, 39 CD44 studies of CML, 98 Nodal knockdown melanoma cell differentiation, HH/GLI signal transduction and, 37, 114 of leukemia, 96 NOD/SCID (non-obese diabetic/severe combined Mitfvit mice, hair graying study, 33 immunodeficiency) mouse model androgen-dependent LAPC9 PCa xenograft SCID mice, and human leukemic cells, 79 transgenic, Dct-lacZ, melanocyte stem cell tumors, 22 studies, 32 CD34+/CD38- implantation into, 94 Mitf melanocyte developmental marker, 32 CD133 cells, injection into, 35 Mitfvit mice, hair graying (murine model) study, tumor formation by CD44+CD24-cells in, 8 non-Hodgkin's lymphoma, 34 molecular inhibitors, for stem cell signaling nonmelanoma skin cancers, 37, 114, 118 pathways, 85-86 Notch-3 gene, 49, 80-81 EGFr pathway crosstalk with, 53-54 molecular signal pathways for maintaining stemness IL-6 interplay with, 54-55 Hedgehog signaling, 24, 37-38, 80-81 IL-6 upregulation of, 52-53 Notch signaling, 24, 36-37 increased expression in mammospheres, 148 Wnt signaling, 24, 37-38 regulation of leukemia stem cells (LSCs), 101 molecular targets in leukemia stem cells Stat-3 targeting of, 53 Flt3 (FMS-like tyrosine kinase), 99 Notch cell signaling pathway. See also basic NF- κ B transcription factor, 99–100 helix-loop-helix (bHLH) transcription PI3K (phosphatidyl-inositol 3 kinase), 99 repressors, of the hairy/enhancer-of-Monzani, E., 35, 40 split-related (H/Espl) family; Delta-like Morivama, M., 37 (D111, D113, D114) notch ligands; MS. See mammospheres (MS) Jagged-1 gene; Jagged-2 gene mTOR (mammalian target of rapamycin), and asymmetric cell division and, 36, 128-132 LSCs survival, 99 described, 129-132 multiple myeloma (MM), 117 functional interactions with TGF- β /Smad, 141 Musashi (Msi1) global role in cell fate determination, 146 blocking translation of Drosophila implication in stem/cancer cell activation, 115 Ttk69/p21Cip1, 147 interplay with BMP, Hedgehog, Wnt pathways, global role in cell fate determination, 146 146-148 interference with pre-mRNA splicing, ligand identification, 129-130 processing, nuclear-cytoplasmic transport, musashi and, 146-148 Numb regulation of, 36 -mediated reduction of DKK3 increased role in tumorigenesis, 24 B-catenin stability, 145 transmembrane receptor activation, 129 and notch cell signaling pathway, 146-148 Notch cell signaling pathway, as cancer in nucleus of Drosophila cells, 146 therapeutic target, 132 blockade receptor/ligand interaction Nanog embryonic stem cell marker, 33 anti-Notch antibody, 134 nasopharyngeal carcinoma, SP isolation from, 3 neutralizing anti-D114 antibodies, 134

neutralizing DLL ligands, 134	BMI-1 role in, 82
recombinant Notch extracellular domain	cell of origin of, 25
protein, 133	description, 21
blocking proteolytic cleavage events	etiology of, 21
S1 cleavage blockade, 132–133 S2 cleavage blockade, 133	genetic mutations/epigenetic alterations and, 24
S3 cleavage blockade, 133	HH/GLI-signaling and, 114, 117
NICD inhibition/dominant negative-MAML1, 135	hTERT immortalized HPCa-derived epithelial cell lines, 23
suppressing Notch protein expression	human lineage hierarchy, 23
RNAi vs. Notch signaling components, 135	PTEN cell signaling pathway and, 24–25
ubiquitination controls, 134. (See also Itch;	self-renewal assays from isolated CSCs, 8
Sel10)	SP isolation from, 3
Notch Intracellular cytoplasmic domain (NICD), 130, 135	xenograft tumors (androgen-dependent LAPC9), 22–23
Nuclear Factor-kappaB (NF-kB)-dependent	prostate cancer stem cells, 21–23
mechanism, 56	prostate gland
role in mammary gland morphogenesis, 56–57 triggering of HIF-1 α gene expression, 57	androgen deprivation/restoration, 18 architecture of, 18
Numb gene product, 36, 135	basal vs. luminal cell discrimination, 19–20
promotion of ubiquitination/proteasomal	CD133 ⁺ / α 2 β 1 ⁺ cells, 20
Notch degradation, 146	description, 18
Oct4 embryonic stem cell marker, 33, 80–81	identification/localization of SCs, 19–20 signaling networks, 18
oligonucleotides, 83	prostatic intraepithelial neoplasia (PIN), 21
ovarian cancer, SP isolation from, 3	prostatic/prostatic stem/progenitor cells, 18–21
	Protein Kinase A (PKA), 111–112
pancreatic cancer, 7	Protein Kinase C δ pathway, 112
HH/GLI-signaling and, 114	PTEN cell signaling pathway, 24–25
Par6 polarity protein, and asymmetric cell division, 149–150	pulse labeling studies (Pierce & Wallace), 70
Patched (PTRCH), HH ligand receptor, 110 . See	radiation and drug resistance, of stem cells, 77
also Gorlin syndrome	radiation/drug resistance of stem cells, 77
Patrawala, L., 3, 7	CSCs vs. quiescent (dormant) cancer cells,
Pax3 melanocyte developmental marker, 32, 34	78–79
PCa. See prostate cancer (PCa)	leukemic stem cells, therapeutic response,
phenotypic markers in leukemia stem cells	77–78
CD44 symposium 08	Radtke, F., 144
CD123 (II. 3 recentor alpha), 97, 98	rapamycin, 99 Reduced Expression in Immortalized Cells (REIC),
CD123 (IL-3 receptor alpha), 97–98 CLL-1/CD96, 98	145
CXCR4 (fusin), 98	Resistance, Nodulation, Division (RND) family
Philadelphia chromosome (in CML), 73, 94	members, 110–112
phosphinositide-3 kinase (PI3K)/AKT pathway,	retinoic acid (RA)
112	for acute promyeloid leukemia, 74–75
PI3K (phosphatidyl-inositol 3 kinase) lipid	importance in embryogenesis, 151
kinase, 99	for teratocarcinoma, 71–72
Pierce, G. B., 70	Reynolds, B. A., 5
"poised" lineage predicting genes in CSCs,	rhabdomyosarcoma, 114
152–153	Ricci-Vitiani, L., 8
Polycomb group ring finger gene family, 40	RNA interference (RNAi)
PRAJA (TGF-β/BMP-regulated protein), 144	inhibition of normal cells, 80
progenitor cells. See prostatic/prostatic	vs. Notch signaling components, 135
stem/progenitor cells Prominin-1 (CD133) cell surface marker, 4,	Sca-1 (Stem Cell Antigen-1), 20
34–35, 40	Se110 (F-box/WD40 repeat-containing protein),
promyelocytic leukemia (PML), 74	135
prostate cancer (PCa), 7 . See also benign prostatic	self-renewal
hyperplasia (BPH); prostatic intraepithelial	of cancer stem cells (CSCs), 7–8
neoplasia (PIN)	of bona fide CSCs, 17–18

self-renewal (cont.)	asymmetric division, 16
and CSC cell-fate molecular mechanisms,	medulloblastoma origination from, 115-116
23–25	molecular signal pathways for maintaining
serial transplantation, 8	stemness
in vitro renewal, 8	Hedgehog signaling, 24, 37-38, 80-81
of melanoma stem cells, 33–36	Notch signaling, 24, 36–38
serial transplantation of CSCs, 8	Wnt signaling, 24, 37–38
SHH-GLI signaling, 37	neural crest derivation, 34
SHH pathway. See Sonic-Hedgehog (SHH)	primitive, undifferentiated, 15
	•
pathway	radiation/drug resistance of, 77
Shibata, D., 79	"self-renewal" feature, 16 (See also self-renewal
side population (SP) phenotype of CSCs	of CSCs)
described, 3–4	somatic stem cells, 16
for discrimination of SCs, 17	stemness (state of a cell)
Hoechst 33352 identification of, 35–36, 58, 103	differentiation theory and, 70–71
melanoma stem cells and, 40	gene expression signatures associated with, 82
sorting of, 6, 77	leukemic cell differentiation and, 69
skin cancers, nonmelanoma, 37, 114, 118	of melanoma stem cells, 34, 40, 42
Slug, regulation of neural crest SCs, 39–40	molecular signal pathways for maintaining
Smad	Hedgehog signaling, 24, 37–38, 80–81
activation of transcription factors, 140	Notch signaling, 24, 36–37
cooperation with Wnt signaling, 141	Wnt signaling, 24, 37–38
crosstalk of TGF- β family signaling through,	stochastic hypothesis of CSCs, ix
140	stromal-epithelial cell signaling, 20–21
Smoothened (SMOH), 110-112	
antagonists of, 118	TACE. See Tumor Necrosis Factor Alpha
glioma cancer stem cells, HH/GLI and, 117	Converting Enzyme (TACE)
HH activation/hair growth induction, 115	TDZD-8, (4-Benzyl-2-methyl-1, 2,
SNAI2 gene expression (in basal/stem cell-cells),	4-thiadiazolidine-3, 5-dione), for LST
49–52, 55–56	therapy, 100
mechanism of action, 55	TEL-AML chromosomal translocation, 96
MS invasive capability promotion by, 56	Teratocarcinoma Derived Growth Factor (TDGF).
overexpression in lymphovascular tumor	See Cripto-1 epidermal growth factor
emboli, 56	teratocarcinomas
•	
upregulation in breast cancer, 56–57	described, 71
soft agar colonies (over generations), 8	irradiation/cisplatin-based cytoxic
somatic stem cells	chemotherapy, 71
functions of, 16	retinoic acid/differentiation therapy of, 69,
mutated, fused with normal SCs, 36	71–72
quiescence property, 17	surgical treatment, 71
Sonic-Hedgehog (SHH) pathway, 22, 80–81	testosterone, conversion to DHT, 18
promotion of neural stem cells, 113	TGF- β superfamily. See Transforming Growth
role in tumorigenesis, 24, 116	Factor-beta (TGF- β) superfamily
Southam, C. M., 2	³ H-thymidine/5'-bromo-deoxyuridine, 17
Sox10 melanoma developmental gene	thyroid cancer, SP isolation from, 3
expression, 34	tissue recombination techniques, 20–21
spheres/spheroids (nonadherent), 5-6, 8, 17	Topczewska, J. M., 39
of luminal breast cancer cells, 51	transdifferentiation properties, of melanoma
multicellular, from normal mammary glands	stem cells, 33–36
(See mammospheres (MS))	Transforming Growth Factor-beta (TGF-β)/SMAD
propagation, in metastatic melanoma, 34	pathway, 112
squamous cell carcinoma, 70	Transforming Growth Factor-beta (TGF-β)
Stat-3	superfamily, 39 . See also activins; bone
HIF-1 α gene upregulation triggered by, 57	morphogenetic proteins; Decapentaplegic
Notch-3 gene targeting by, 53	(Dpp); Lefty (embryonic stem-cell derived
Stecca, B., 37	factor) molecules; Nodal embryonic factor
stem cells (SCs). <i>See also</i> cancer stem cells (CSCs);	description, 140
	functional interactions with Notch signaling,
embryonic stem cells (ESCs); melanocyte	9 0
stem cell, adult; prostatic/prostatic	141
stem/progenitor cells; somatic stem cells	in gastrointestinal tissues/cancers, 143–144

> Index 171

in hematopoietic stem cells, 142-143 mediation of germ layer differentiation, 141 in neural stem cells, 142 signaling in embryonic stem cells, 140-141 transgenic mice Dct-lacZ, melanocyte stem cell studies, 32 increased Sca-1/CK6+ stem/progenitor cells, and side populations, 145 transit amplifying cells, 69-70 Trott, K. R., 78 tumorigenicity of CSCs, 6-7, 17 cell signaling pathways, 24, 118 (See also individual pathways) Hedgehog/GLI signal transduction and, 114 prostate cancer (PCa), 23 Tumor Necrosis Factor Alpha Converting Enzyme

(TACE), 56, 130, 133 tumor stroma-derived bone morphogenetic

proteins (BMPs), 38 21-kDa guanine-nucleotide binding protein

mutation, in AML, 76 Tyr melanocyte developmental marker, 32

tyrosine-kinase receptor 1, endothelium-associated gene, 39

ubiquitin activating enzyme-E1 like protein (UBE1L), 75

vascular endothelial cadherin (VE-Cadherin) gene, 39 "vascular mimicry" by melanomas, 140 Vimentin gene (mesenchymal hallmark), 49 co-expression in breast cancer, melanoma presence in mammospheres, 55

role of, 51-52

Virchow, Rudolph, 2 Vitamins A and D, anti-cancer properties/ differentiation promoting effects, 151-152 vitiligo (depigmentation disorder), 33

Wallace, C., 70 Wnt/ β -catechin cell signaling pathway, 24, 37-38, 80-81 activation in mammary gland, 145 cancer stem cell-directed therapy and, 81 Wnt signaling pathway, 37-38 asymmetric cell division and, 36, 128, 139-140 Dickkopf (DKK) gene family inhibition of, 145-146

GSK3-inhibitor activation of, 145 implication in stem/cancer cell activation, 115

interplay with Wnt, Hedgehog, BMP, Notch pathways, 146-148

maintenance of hematopoietic stem cells, 145

regulation of leukemia stem cells (LSCs), 101

regulation of/regulated by asymmetric cell division, 36, 128, 139-140 role of, 144-145 Smad cooperation with, 141

xenograft tumors

androgen-dependent LAPC9 PCa, 22-23 ductal breast carcinoma, 51 HH/GLI signal transduction and, 37, 114 IL-6 promotion, 52, 57 NOD/SCID mouse model, 103