CANCER STEM CELLS

A remarkable paradigm shift has occurred in recent years regarding the biological origins of cancer. The cancer stem cell hypothesis has challenged the foundational notions of cancer, and the therapeutic implications have been profound. Compelling evidence indicates that errors in the development of a small subset of adult stem cells can lead to cancer. Only this small subpopulation of cells has the inherent ability to form tumors and metastasize. This book discusses the emerging field of cancer stem cell research, with contributions from leading experts on the basic biology, genetic pathways, and potentials for therapeutic targeting of cancer stem cells. It also covers clinical challenges for these new discoveries, namely, that cancer stem cells might be resistant to conventional chemotherapeutic and radiological treatments and may be at the biological core of relapse and therapeutic resistance. This book is an essential concise guide to the latest discoveries and therapies in cancer research.

William L. Farrar, PhD, is head of the Cancer Stem Cell Section at the Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland.
Cancer Stem Cells

Edited by

William L. Farrar
National Cancer Institute, Frederick, Maryland
Contents

Contributors vii
Preface ix

SECTION I: CHARACTERIZATION OF CANCER STEM CELLS
1. Purification and characterization of cancer stem cells 1
 Elaine M. Hurt and William L. Farrar
2. Prostate cancer stem cells 15
 Collene R. Jeter and Dean G. Tang
3. Melanoma cancer stem cells 31
 Alexander Roesch and Meenhard Herlyn
4. Mammospheres and breast carcinoma 49
 Massimiliano Bonafe

SECTION II: THERAPEUTIC IMPLICATIONS OF CANCER STEM CELLS
5. Preventative and therapeutic strategies for cancer stem cells 68
 Stewart Sell and Gennadi Glinsky
6. Targeting acute myelogenous leukemia stem cells 93
 Monica L. Guzman, Gerrit J. Schuurhuis, and Craig T. Jordan

SECTION III: TARGETING CANCER STEM CELL PATHWAYS
7. Hedgehog/GLI signaling in cancer 109
 Fritz Aberger
8. Targeting the Notch signaling pathway in cancer stem cells 128
 Joon T. Park, Ie-Ming Shih, and Tian-Li Wang
9. TGF-β, Notch, and Wnt in normal and malignant stem cells: differentiating agents and epigenetic modulation 139
 Stephen Byers, Michael Pishvaian, Lopa Mishra, and Robert Glazer

Index 163

Color plates follow page 78.
Contributors

Fritz Aberger, PhD
Department of Molecular Biology
University of Salzburg
Salzburg, Austria

Massimiliano Bonafe, MD
Center for Applied Biomedical Research
St. Orsola-Malpighi University Hospital
Bologna, Italy
Department of Experimental Pathology
University of Bologna
Bologna, Italy

Stephen Byers, PhD
Departments of Oncology, Biochemistry, Molecular and Cellular Biology, and Surgery
Lombardi Comprehensive Cancer Center
Georgetown University
Washington, DC

Robert Glazer, PhD
Departments of Oncology, Biochemistry, Molecular and Cellular Biology, and Surgery
Lombardi Comprehensive Cancer Center
Georgetown University
Washington, DC

Gennadi Glinsky, MD, PhD
Ordway Research Institute
Albany, New York

Monica L. Guzman, PhD
University of Rochester School of Medicine and Dentistry
Rochester, New York

Meenhard Herlyn, DVM, DSc
Program of Molecular and Cellular Oncogenesis
The Wistar Institute
Philadelphia, Pennsylvania

Elaine M. Hurt, PhD
Cancer Stem Cell Section
Laboratory of Cancer Prevention Center for Cancer Research
National Cancer Institute
National Institutes of Health
Frederick, Maryland
Contributors

Collene R. Jeter, PhD
Department of Carcinogenesis
The University of Texas M. D. Anderson Cancer Center
Smithville, Texas

Craig T. Jordan, PhD
Departments of Medicine and Biomedical Genetics
University of Rochester Medical Center
Rochester, New York

Lopa Mishra, PhD
Departments of Oncology, Biochemistry, Molecular and Cellular Biology, and Surgery
Lombardi Comprehensive Cancer Center
Georgetown University
Washington, DC

Joon T. Park, PhD
Departments of Pathology and Obstetrics/Gynecology
Johns Hopkins Medical Institutions
Baltimore, Maryland

Michael Pishvaian, PhD
Departments of Oncology, Biochemistry, Molecular and Cellular Biology, and Surgery
Lombardi Comprehensive Cancer Center
Georgetown University
Washington, DC

Alexander Roesch, PhD
Program of Molecular and Cellular Oncogenesis
The Wistar Institute
Philadelphia, Pennsylvania

Gerrit J. Schuurhuis, PhD
Department of Hematology
VU University Medical Center
Amsterdam, The Netherlands

Stewart Sell, MD
Wadsworth Center
Ordway Research Institute
University at Albany
Albany, New York

Ie-Ming Shih, PhD
Department of Pathology
Johns Hopkins Medical Institutions
Baltimore, Maryland

Dean G. Tang, MD, PhD
Department of Carcinogenesis
University of Texas M. D. Anderson Cancer Center
Smithville, Texas

Tian-Li Wang, PhD
Department of Obstetrics/Gynecology
Johns Hopkins Medical Institutions
Baltimore, Maryland
Cancer results from the accumulated effects of somatic or inherited gene alterations that result in the improper function of proteins. An increased understanding of the underlying genetics has shaped the modern hypotheses for the basis of cancer. First was the concept of oncogenes, defined as genes that promote a transformed cellular phenotype. The altered activities of this class of proteins are usually due to mutations in the genes themselves, polymorphisms in promoter elements, or aberrant activation of upstream signaling pathways. The next concept with profound implications for the genetic basis of cancer was the discovery of tumor suppressor genes. This class of genes, when genetically silent, essentially takes the brakes off the normal controls of cell cycle, senescence, and apoptosis.

From the silencing of genes in cancer emerged the rapidly growing field of epigenetics and how gene silencing leads to the development of cancer. Therefore, for the past several decades of molecular biology, the focus has been on the ON and OFF switching of genes. Engineering of recombinant DNA in model cell systems produced a greater understanding of the underlying biochemistry and molecular biology of cancer. This led to the belief that similar alterations could occur naturally in nearly any somatic cell type, and therefore cancer was believed to be of a stochastic nature.

The stochastic hypothesis suggests the clonal evolution model, in which any cell with overexpressed oncogenes and/or downregulated tumor suppressors will eventually form a tumor. This model could explain the multiple aspects of human disease and clinical observations. However, recently, a hypothesis has reemerged to challenge this notion, causing a shift away from the stochastic model. Increasing evidence, initially discovered in hematological malignancies and, later, in solid tumors, suggests that tumors are formed from a subset of cells with unique characteristics that reside within the volume of the tumor. The unique subset of tumor-initiating cells is defined as cancer stem cells, a term initially coined by researchers in hematological malignancies and adopted by solid tumor researchers. What is shared in common with diverse cancers is that the unique subsets of tumor-initiating cells have stem cell–like biological and genetic similarities. Most pronounced are unique sets of surface markers, the ability of self-renewal, expression of developmental stem cell–like genes, and biological properties that facilitate tumor development.
Preface

The birth of the cancer stem cell hypothesis has generated a large degree of enthusiasm not without profound therapeutic considerations. For the most part, few of the current chemotherapeutic and irradiation strategies have considered the cancer stem cell component of the tumor burden. In fact, there are significant indications that the tumor-initiating cells are resistant to the conventional tools of cancer therapeutics.

This book focuses on the clinical and therapeutic implications of cancer stem cells. We have included chapters concerning the basic science of both leukemic and solid tumor stem cell biology and a practical chapter on the isolation and characterization of cancer stem cells. Because of the initial recognition of cancer stem cells in leukemia, therapeutic strategies may first be employed in this cancer, as discussed by researchers active in the field. Finally, we have included chapters describing stem cell signaling pathways that direct self-renewal and other vital cancer stem cell characteristics. These pathways offer the fodder for molecularly targeted therapeutics and rational drug design.

While this is a rapidly emerging field, the discovery of the cancer stem cell as a subset of cells with unique biological and genetic properties will likely have a substantial impact on cancer therapeutics and prevention as well as on the understanding of the biological origins of cancer.

William L. Farrar, PhD