Thermodynamics of the Earth and Planets

This textbook provides an intuitive yet mathematically rigorous introduction to thermodynamics and thermal physics focused on the rich variety of planetary processes. It demonstrates how the workings of planetary bodies can be understood in depth by reducing them to fundamental physics and chemistry.

The book is based on two courses that the author has taught for many years at the University of Georgia. It offers a strong "first-principles" theoretical foundation in classical thermodynamics, yet it also provides many examples of numerical calculations, including a large number of *Maple* procedures that the reader can use and modify, limited only by their interests and imagination. The book assumes that the reader is proficient in calculus and introductory college physics, chemistry and Earth science. All required material beyond this is introduced in the book. The book also includes a large number of bibliographic references and suggestions for further study. There are many "Worked Example" boxes interspersed in the text, and end-of-chapter exercises, which in many cases expand upon the topics covered in the worked examples. Worked solutions to the problems are provided online. The book also includes Software Boxes, which show the reader how to implement numerical solutions to many of the problems, using *Maple*.

As well as being an ideal textbook on planetary thermodynamics for advanced students in the Earth and planetary sciences, it also provides an innovative and quantitative complement to more traditional courses in geological thermodynamics, igneous and metamorphic petrology, chemical oceanography, mineral deposits, planetary geology and planetary atmospheres. In addition to its use as a textbook, it is also of great interest to researchers looking for a "one-stop" source of concepts and techniques that they can apply to their research problems.

- Ties together the physics and chemistry of planetary systems into a single textbook.
- Emphasizes first principles and foundations.
- Contains rigorous mathematical derivation of ALL results.
- Applications and examples are drawn from many different branches of Earth and planetary sciences.
- · Contains many worked numerical examples and end-of-chapter problems.
- Includes many downloadable Maple routines, explained in Software Boxes.

ALBERTO PATIÑO DOUCE is a Professor in the Department of Geology at the University of Georgia, where he has been for over 20 years. He has very wide research interests, which include the origin of Earth's continents, the nature of the early terrestrial atmosphere, the volatile contents of the Martian mantle and of meteorite parent bodies, the origin of life, foundational issues in classical and non-equilibrium thermodynamics, applications of statistical physics to human societies, and the reasons why human cultures repeatedly ignore the finiteness of natural resources, overreach and self-destroy. His teaching in geology, planetary sciences and thermodynamics at all levels is recognized as being unusually intense, Cambridge University Press 978-0-521-89621-4 - Thermodynamics of the Earth and Planets Alberto Patiño Douce Frontmatter More information

quantitative, energetic, demanding and uncompromising, but despite this he is a frequent recipient of his Department's "Professor of the Year" award, chosen by student vote. His former Ph.D. students are pursuing a wide range of careers in academia, at NASA, and in national security. He is an Associate Editor for the journal *Lithos* and formerly for *Mineralogy & Petrology*.

Cambridge University Press 978-0-521-89621-4 - Thermodynamics of the Earth and Planets Alberto Patiño Douce Frontmatter More information

Thermodynamics of the Earth and Planets

ALBERTO PATIÑO DOUCE University of Georgia

Cambridge University Press 978-0-521-89621-4 - Thermodynamics of the Earth and Planets Alberto Patiño Douce Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521896214

© Alberto Patiño Douce 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Patiño Douce, Alberto. Thermodynamics of the Earth and planets / Alberto Patiño Douce. p. cm. Includes bibliographical references and index. ISBN 978-0-521-89621-4 (hardback) 1. Laws of thermodynamics – Textbooks. 2. Planetary theory – Textbooks. I. Title. QC311.P236 2011 551.5'22–dc22 2011009935

ISBN 978-0-521-89621-4 Hardback

Additional resources for this publication at www.cambridge.org/patino_douce

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pr	eface	pag	ge ix
1	Energy	y in planetary processes and the First Law of Thermodynamics	1
	1.1	Some necessary definitions	2
	1.2	Conservation of energy and different manifestations of energy	4
	1.3	Mechanical energy. An introduction to dissipative and non-dissipative	
		transformations	4
	1.4	Expansion work. Introduction to equations of state	13
	1.5	Isothermal and adiabatic processes. Dissipative vs. non-dissipative	
		transformations redux	23
	1.6	Elastic energy	24
	1.7	Two complementary descriptions of nature: macroscopic and microscopic	26
	1.8	Energy associated with electric and magnetic fields	27
	1.9	Thermal energy and heat capacity	35
	1.10	The First Law of Thermodynamics	39
	1.11	Independent variables and material properties	40
	1.12	Some applications of the First Law of Thermodynamics	41
	1.13	Enthalpy associated with chemical reactions	49
	1.14	Internal energy and the relationship between macroscopic	
		thermodynamics and the microscopic world	55
	1.15	An overview of the properties of matter and equations of state	64
	Exerc	ises for Chapter 1	67
2	Energy	y sources in planetary bodies	70
	2.1	Planetary heat flows	71
	2.2	Dissipation of gravitational potential energy	73
	2.3	Gravitational binding energy	75
	2.4	Accretion	78
	2.5	Contraction	89
	2.6	Differentiation	96
	2.7	Tidal dissipation of mechanical energy	103
	2.8	Dissipation of electrical energy	112
	2.9	Radioactive heating	116
	Exerc	ises for Chapter 2	120
3	Energy	y transfer processes in planetary bodies	122
	3.1	Transport processes	124
	3.2	Heat transport by diffusion	126
	3.3	Heat diffusion and cooling of planetary bodies	137

v

3.4 Convection as a heat engine 14 3.5 Planetary adiabats 14 3.6 Heat advection 14 3.7 Convection as a heat transport mechanism 15 3.8 Parametrization of convection in planetary interiors 16 3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5.1 Chemical equilibrium mong pure chemical species 23 5.3 P	vi		Contents	
3.4 Convection as a heat engine 14 3.5 Planetary adiabats 14 3.6 Heat advection 14 3.7 Convection as a heat transport mechanism 15 3.8 Parametrization of convection in planetary interiors 16 3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Hind Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 5.2 Equilibrium Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium condition. Activity and the equilibrium constan				
3.5 Planetary adiabats 14 3.6 Heat advection 14 3.7 Convection as a heat transport mechanism 15 3.8 Parametrization of convection in planetary interiors 16 3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The herropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.8 Thermodynamic potentials 20 5.1 Chemical equilibrium. Using composition is a thermodynamic variable 22 5.2 Equilibrium anong pure chemical species 23 5.3 Phases of variable composition: chemic			3.4 Convection as a heat engine	141
3.6 Heat advection 14 3.7 Convection as a heat transport mechanism 15 3.8 Parametrization of convection in planetary interiors 16 3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5.1 Chemical equilibrium anong pure chemical species 23 5.2 Equilibrium anong pure chemical species 23 5.3 Phase of variable composition: Activity and the equilibrium constant			3.5 Planetary adiabats	145
3.7 Convection as a heat transport mechanism 15 3.8 Parametrization of convection in planetary interiors 16 3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.8 Thermodynamic potentials 20 5.1 Chemical equilibrium 21 5.2 Equilibrium anong pure chemical species 23 5.3 Phases of variable composition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 26 5.7			3.6 Heat advection	148
3.8 Parametrization of convection in planetary interiors 16 3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5.1 Chemical equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Parial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to			3.7 Convection as a heat transport mechanism	153
3.9 Convection and cooling of solid planetary interiors 17 Exercises for Chapter 3 17 4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Theremodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium 20 5.1 Chemical equilibrium group chemical species 23 5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant <t< td=""><td></td><td></td><td>3.8 Parametrization of convection in planetary interiors</td><td>165</td></t<>			3.8 Parametrization of convection in planetary interiors	165
Exercises for Chapter 3174The Second Law of Thermodynamics and thermodynamic potentials184.1An intuitive approach to entropy184.2The entropy postulate and the Second Law of Thermodynamics184.3The First Law of Thermodynamics revisited184.4Entropy generation and energy dissipation184.5Planetary convection and Carnot cycles184.6A microscopic view of entropy194.7The Third Law of Thermodynamics204.8Thermodynamic potentials204.9Gibbs free energy22Exercises for Chapter 4225.1Chemical equilibrium. Using composition as a thermodynamic variable225.2Equilibrium among pure chemical species235.3Phases of variable composition: chemical potential revisited245.4Partial molar properties255.5Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity-composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium anong phase sof variable composition296.1The foundations of phase equilibrium286.2Analysis of phase equilibrium among phases of variable composition326.3Phase diagrams in open systems316.4Equilibrium and phase diagrams <td></td> <td></td> <td>3.9 Convection and cooling of solid planetary interiors</td> <td>173</td>			3.9 Convection and cooling of solid planetary interiors	173
4 The Second Law of Thermodynamics and thermodynamic potentials 18 4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5.1 Chemical equilibrium 22 5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 27 5.8 More complex ideal activity-composition relationships 26 5.8 More compl]	Exercises for Chapter 3	178
4.1 An intuitive approach to entropy 18 4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium among pure chemical species 23 5.2 Equilibrium anong pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.7 The geometric view of activity and Gibbs free energy of mixing 26 <t< td=""><td></td><td>4 .</td><td>Fhe Second Law of Thermodynamics and thermodynamic potentials</td><td>181</td></t<>		4 .	Fhe Second Law of Thermodynamics and thermodynamic potentials	181
4.2 The entropy postulate and the Second Law of Thermodynamics 18 4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium. Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 26 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27		4	4.1 An intuitive approach to entropy	181
4.3 The First Law of Thermodynamics revisited 18 4.4 Entropy generation and carnot cycles 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium 22' 5.1 Chemical equilibrium among pure chemical species 23 5.2 Equilibrium anong pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.6 Introduction to solution theory: ideal solutions 27 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 28		4	4.2 The entropy postulate and the Second Law of Thermodynamics	183
4.4 Entropy generation and energy dissipation 18 4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium among pure chemical species 23 5.1 Chemical equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5		4	4.3 The First Law of Thermodynamics revisited	185
4.5 Planetary convection and Carnot cycles 18 4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium. Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium 22 5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 27 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 28 6.1 The foundations of phase equilibrium 28 6.2 Analysis of phase equilibrium among phases of variable composition 32 6.3 Phase diagrams in open s		4	4.4 Entropy generation and energy dissipation	186
4.6 A microscopic view of entropy 19 4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium. Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium 22 5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.6 Introduction to solution theory: ideal solutions 26 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 28 6 Phase equilibrium and phase diagrams 28 6.1 The foundations of phase equi		4	4.5 Planetary convection and Carnot cycles	189
4.7 The Third Law of Thermodynamics 20 4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium. Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 6 Phase equilibrium and phase diagrams 28 6.1 The foundations of phase equilibrium among phases of rariable composition 29 6.2 Analysis of phase equilibrium among phases of variable composition 32 6.4 Equilibrium among phases of variable composition 32 </td <td></td> <td>4</td> <td>4.6 A microscopic view of entropy</td> <td>196</td>		4	4.6 A microscopic view of entropy	196
4.8 Thermodynamic potentials 20 4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium. Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium among pure chemical species 23 5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 6 6 Phase equilibrium and phase diagrams 28 6.1 The foundations of phase equilibrium 29 6.3 Phase diagrams in open systems 31 6.4 Equilibrium among phases of variable composition 32 6.5		4	4.7 The Third Law of Thermodynamics	206
4.9 Gibbs free energy 22 Exercises for Chapter 4 22 5 Chemical equilibrium. Using composition as a thermodynamic variable 22 5.1 Chemical equilibrium among pure chemical species 23 5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 6 Phase equilibrium and phase diagrams 28 6.1 The foundations of phase equilibrium 28 6.2 Analysis of phase equilibrium among phases of variable composition 32 6.3 Phase diagrams in open systems 31 6.4 Equilibrium among phases of variable composition 32		4	4.8 Thermodynamic potentials	209
Exercises for Chapter 4225Chemical equilibrium. Using composition as a thermodynamic variable22'5.1Chemical equilibrium225.2Equilibrium among pure chemical species235.3Phases of variable composition: chemical potential revisited245.4Partial molar properties245.5Generalized equilibrium condition. Activity and the equilibrium constant255.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity-composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium28'6.2Analysis of phase equilibrium among phases of fixed composition29'6.3Phase diagrams in open systems3116.4Equilibrium and phase transitions in phases of variable composition32'6.5Chemical equilibrium at first-order phase transitions32'6.6Discontinuous phase transitions in phases of variable composition336.7Critical phase transitions34'7.1An intuitive approach to critical phase transitions34'7.2Location of the critical mixing point35'7.3Calculation of non-dimensional solvi35'7.4Order-disorder phase transitions in crystalline solids36' </td <td></td> <td>4</td> <td>4.9 Gibbs free energy</td> <td>223</td>		4	4.9 Gibbs free energy	223
5Chemical equilibrium. Using composition as a thermodynamic variable225.1Chemical equilibrium225.2Equilibrium among pure chemical species235.3Phases of variable composition: chemical potential revisited245.4Partial molar properties245.5Generalized equilibrium condition. Activity and the equilibrium constant255.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity-composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium28'6.2Analysis of phase equilibrium among phases of fixed composition29'6.3Phase diagrams in open systems316.4Equilibrium at first-order phase transitions32'6.5Chemical equilibrium at first-order phase transitions32'6.6Discontinuous phase transitions in phases of variable composition33'6.7Critical phase transitions34'7.1An intuitive approach to critical phase transitions34'7.2Location of the critical mixing point35'7.3Calculation of non-dimensional solvi35'7.4Order-disorder phase transitions in crystalline solids36']	Exercises for Chapter 4	227
5.1Chemical equilibrium225.2Equilibrium among pure chemical species235.3Phases of variable composition: chemical potential revisited245.4Partial molar properties245.5Generalized equilibrium condition. Activity and the equilibrium constant255.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity-composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams286.1The foundations of phase equilibrium286.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems316.4Equilibrium among phases of variable composition326.5Chemical equilibrium at first-order phase transitions326.6Discontinuous phase transitions in phases of variable composition336.7Critical phase transitions347.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36		5 (Chemical equilibrium. Using composition as a thermodynamic variable	229
5.2 Equilibrium among pure chemical species 23 5.3 Phases of variable composition: chemical potential revisited 24 5.4 Partial molar properties 24 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 25 5.6 Introduction to solution theory: ideal solutions 25 5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 6 Phase equilibrium and phase diagrams 28 6.1 The foundations of phase equilibrium 28 6.2 Analysis of phase equilibrium among phases of 29 6.3 Phase diagrams in open systems 31 6.4 Equilibrium at first-order phase transitions 32 6.5 Chemical equilibrium at first-order phase transitions 32 6.6 Discontinuous phase transitions in phases of variable composition 33 7.1 An intuitive approach to critical phase transitions 34 7.1 An intuitive approach to critical			5.1 Chemical equilibrium	229
5.3Phases of variable composition: chemical potential revisited245.4Partial molar properties245.5Generalized equilibrium condition. Activity and the equilibrium constant255.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity-composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams286.1The foundations of phase equilibrium286.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems316.4Equilibrium and phase transitions in phases of variable composition326.5Chemical equilibrium at first-order phase transitions326.6Discontinuous phase transitions in phases of variable composition336.7An intuitive approach to critical phase transitions347.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36			5.2 Equilibrium among pure chemical species	238
5.4Partial molar properties245.5Generalized equilibrium condition. Activity and the equilibrium constant255.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity–composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams286.1The foundations of phase equilibrium286.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems316.4Equilibrium and phase transitions in phase of variable composition326.5Chemical equilibrium at first-order phase transitions326.6Discontinuous phase transitions in phases of variable composition337.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36			5.3 Phases of variable composition: chemical potential revisited	245
5.5Generalized equilibrium condition. Activity and the equilibrium constant25.5.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity–composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium28'6.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems31'6.4Equilibrium and phases of variable composition32'6.5Chemical equilibrium at first-order phase transitions32'6.6Discontinuous phase transitions in phases of variable composition33'7Critical phase transitions34'7.1An intuitive approach to critical phase transitions34'7.2Location of the critical mixing point35'7.3Calculation of non-dimensional solvi35'7.4Order–disorder phase transitions in crystalline solids36'			5.4 Partial molar properties	248
5.6Introduction to solution theory: ideal solutions255.7The geometric view of activity and Gibbs free energy of mixing265.8More complex ideal activity–composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium28'6.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems31:6.4Equilibrium among phases of variable composition32:6.5Chemical equilibrium at first-order phase transitions32:6.6Discontinuous phase transitions in phases of variable composition33:7Critical phase transitions34:7.1An intuitive approach to critical phase transitions34:7.2Location of the critical mixing point35:7.3Calculation of non-dimensional solvi35:7.4Order-disorder phase transitions in crystalline solids36			5.5 Generalized equilibrium condition. Activity and the equilibrium constant	253
5.7 The geometric view of activity and Gibbs free energy of mixing 26 5.8 More complex ideal activity-composition relationships 26 5.9 Non-ideal solutions 27 Exercises for Chapter 5 28 6 Phase equilibrium and phase diagrams 28' 6.1 The foundations of phase equilibrium 28' 6.2 Analysis of phase equilibrium among phases of fixed composition 29 6.3 Phase diagrams in open systems 31 6.4 Equilibrium among phases of variable composition 32 6.5 Chemical equilibrium at first-order phase transitions 32 6.6 Discontinuous phase transitions in phases of variable composition 33 6.4 Equilibrium at first-order phase transitions 34 7 Critical phase transitions 344 7.1 An intuitive approach to critical phase transitions 344 7.2 Location of the critical mixing point 355 7.3 Calculation of non-dimensional solvi 355 7.4 Order-disorder phase transitions in crystalline solids 36			5.6 Introduction to solution theory: ideal solutions	258
5.8More complex ideal activity-composition relationships265.9Non-ideal solutions27Exercises for Chapter 5286Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium28'6.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems31:6.4Equilibrium among phases of variable composition326.5Chemical equilibrium at first-order phase transitions3206.6Discontinuous phase transitions in phases of variable composition330Exercises for Chapter 6347Critical phase transitions3497.1An intuitive approach to critical phase transitions3497.2Location of the critical mixing point3557.3Calculation of non-dimensional solvi3597.4Order-disorder phase transitions in crystalline solids36			5.7 The geometric view of activity and Gibbs free energy of mixing	265
5.9Non-ideal solutions27.Exercises for Chapter 528.6Phase equilibrium and phase diagrams28.6.1The foundations of phase equilibrium28.6.2Analysis of phase equilibrium among phases of fixed composition29.6.3Phase diagrams in open systems31.6.4Equilibrium among phases of variable composition32.6.5Chemical equilibrium at first-order phase transitions32.6.6Discontinuous phase transitions in phases of variable composition33.Exercises for Chapter 634.7Critical phase transitions34.7.1An intuitive approach to critical phase transitions34.7.2Location of the critical mixing point35.7.3Calculation of non-dimensional solvi35.7.4Order-disorder phase transitions in crystalline solids36.			5.8 More complex ideal activity–composition relationships	266
Exercises for Chapter 5286Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium28'6.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems31:6.4Equilibrium among phases of variable composition326.5Chemical equilibrium at first-order phase transitions326.6Discontinuous phase transitions in phases of variable composition335.7Critical phase transitions3447Critical phase transitions3447.1An intuitive approach to critical phase transitions3447.2Location of the critical mixing point357.3Calculation of non-dimensional solvi3547.4Order-disorder phase transitions in crystalline solids36			5.9 Non-ideal solutions	274
6Phase equilibrium and phase diagrams28'6.1The foundations of phase equilibrium286.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems31:6.4Equilibrium among phases of variable composition32:6.5Chemical equilibrium at first-order phase transitions3206.6Discontinuous phase transitions in phases of variable composition330Exercises for Chapter 634'7Critical phase transitions3497.1An intuitive approach to critical phase transitions3497.2Location of the critical mixing point3597.3Calculation of non-dimensional solvi3597.4Order-disorder phase transitions in crystalline solids36]	Exercises for Chapter 5	285
6.1The foundations of phase equilibrium286.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems316.4Equilibrium among phases of variable composition326.5Chemical equilibrium at first-order phase transitions326.6Discontinuous phase transitions in phases of variable composition33Exercises for Chapter 6347Critical phase transitions347.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36		6	Phase equilibrium and phase diagrams	287
6.2Analysis of phase equilibrium among phases of fixed composition296.3Phase diagrams in open systems316.4Equilibrium among phases of variable composition326.5Chemical equilibrium at first-order phase transitions326.6Discontinuous phase transitions in phases of variable composition335.7Critical phase transitions347Critical phase transitions347.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36		(5.1 The foundations of phase equilibrium	287
fixed composition29.6.3Phase diagrams in open systems31.6.4Equilibrium among phases of variable composition32.6.5Chemical equilibrium at first-order phase transitions32.6.6Discontinuous phase transitions in phases of variable composition33.Exercises for Chapter 634.7Critical phase transitions34.7.1An intuitive approach to critical phase transitions34.7.2Location of the critical mixing point35.7.3Calculation of non-dimensional solvi35.7.4Order-disorder phase transitions in crystalline solids36.			6.2 Analysis of phase equilibrium among phases of	
6.3Phase diagrams in open systems31.6.4Equilibrium among phases of variable composition32.6.5Chemical equilibrium at first-order phase transitions32.6.6Discontinuous phase transitions in phases of variable composition33.Exercises for Chapter 634.7Critical phase transitions34.7.1An intuitive approach to critical phase transitions34.7.2Location of the critical mixing point35.7.3Calculation of non-dimensional solvi35.7.4Order-disorder phase transitions in crystalline solids36.			fixed composition	295
6.4Equilibrium among phases of variable composition32.6.5Chemical equilibrium at first-order phase transitions32.6.6Discontinuous phase transitions in phases of variable composition33.Exercises for Chapter 634.7Critical phase transitions34.7.1An intuitive approach to critical phase transitions34.7.2Location of the critical mixing point35.7.3Calculation of non-dimensional solvi35.7.4Order-disorder phase transitions in crystalline solids36.			6.3 Phase diagrams in open systems	315
6.5Chemical equilibrium at first-order phase transitions32/6.6Discontinuous phase transitions in phases of variable composition33/Exercises for Chapter 634/7Critical phase transitions34/7.1An intuitive approach to critical phase transitions34/7.2Location of the critical mixing point35/7.3Calculation of non-dimensional solvi35/7.4Order-disorder phase transitions in crystalline solids36		(6.4 Equilibrium among phases of variable composition	325
6.6Discontinuous phase transitions in phases of variable composition33Exercises for Chapter 6347Critical phase transitions347.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36			6.5 Chemical equilibrium at first-order phase transitions	326
Exercises for Chapter 6347 Critical phase transitions3497.1An intuitive approach to critical phase transitions3497.2Location of the critical mixing point3597.3Calculation of non-dimensional solvi3597.4Order–disorder phase transitions in crystalline solids369			6.6 Discontinuous phase transitions in phases of variable composition	330
7 Critical phase transitions3497.1An intuitive approach to critical phase transitions3497.2Location of the critical mixing point3597.3Calculation of non-dimensional solvi3597.4Order-disorder phase transitions in crystalline solids369]	Exercises for Chapter 6	347
7.1An intuitive approach to critical phase transitions347.2Location of the critical mixing point357.3Calculation of non-dimensional solvi357.4Order-disorder phase transitions in crystalline solids36		7 (Critical phase transitions	349
7.2Location of the critical mixing point35.7.3Calculation of non-dimensional solvi35.7.4Order-disorder phase transitions in crystalline solids36.		,	7.1 An intuitive approach to critical phase transitions	349
 7.3 Calculation of non-dimensional solvi 7.4 Order-disorder phase transitions in crystalline solids 36 		,	7.2 Location of the critical mixing point	355
7.4 Order–disorder phase transitions in crystalline solids 36		,	7.3 Calculation of non-dimensional solvi	359
× *		,	7.4 Order–disorder phase transitions in crystalline solids	361

vii		Contents	
	7.5	Analogies with other phase transitions	369
	7.6	Landau theory of phase transitions	372
	Exerc	ises for Chapter 7	384
	8 Equation	ons of state for solids and the internal structure of terrestrial planets	386
	8.1	An introduction to equations of state for solids	386
	8.2	Macroscopic equations of state	388
	8.3	Isothermal equations of state from interatomic potentials:	10.5
	0.4	the Born–Mie EOS	405
	8.4	Thermal pressure	407
	Exerc	ises for Chapter 8	419
	9 Therm	odynamics of planetary volatiles	420
	9.1	Fugacity and standard state fugacity	420
	9.2	Liquid–vapor equilibrium. Critical phase transitions redux	428
	9.3	The principle of corresponding states	440
	9.4	Equations of state for real fluids at $P-T$ conditions typical	
		of the crusts and upper mantles of the terrestrial planets	442
	9.5	Calculation of fugacity in fluid phases	450
	9.6	Speciation in multicomponent volatile phases	459
	9.7	Fluids at the conditions of giant planet interiors	473
	Exerc	ises for Chapter 9	475
	10 Meltin	g in planetary bodies	477
	10.1	Principles of melting	477
	10.2	Melting point depression. Eutectics, cotectics and peritectics	481
	10.3	Partitioning of trace components between solids and melts	484
	10.4	The effect of "impurities" on melting temperature	487
	10.5	Melting in planetary interiors	494
	10.6	Decompression melting	494
	10.7	Open system melting	512
	10.8	The nature of solid–melt equilibrium in icy satellites	517
	Exerc	ises for Chapter 10	521
	11 Dilute	solutions	522
	11.1	Some properties of dilute solutions	522
	11.2	Effects of dilute solutes on the properties of the solvent	529
	11.3	Electrolyte dissociation	540
	11.4	Thermodynamic formulation of electrolyte solutions	544
	11.5	Speciation in ionic solutions. Iron solubility in ocean water as an example	554
	11.6	Activity coefficients in electrolyte solutions	562
	Exerc	ises for Chapter 11	575
	12 Non-eo	guilibrium thermodynamics and rates of natural processes	577
	12.1	Non-equilibrium thermodynamics	577
	12.2	Chemical diffusion	581

VIII	Contents		
	12.3 Rate of chemical reactions	592	
	12.4 Controls on rate constants	609	
	12.5 An introduction to kinetics of heterogeneous processes	611	
]	Exercises for Chapter 12	615	
13 ⁻	Topics in atmospheric thermodynamics and radiative energy transfer	616	
	13.1 Gravitational binding of planetary atmospheres	616	
	13.2 Equilibrium thermodynamics in a gravitational field	620	
	13.3 Radiative energy transfer	625	
]	Exercises for Chapter 13	643	
14 ⁻	Thermodynamics of life	645	
	14.1 Chemical evolution of post-nebular atmospheres	645	
	14.2 Thermodynamics of metabolic processes	657	
	14.3 Speculations about extraterrestrial life	665	
	14.4 Entropy and life	668	
]	Exercise for Chapter 14	669	
Apı	pendix 1 Physical constants and other useful numbers and		
	conversion factors	671	
App	pendix 2 Derivation of thermodynamic identities	672	
Ref	ferences	675	
Ind	lex	690	

Preface

My first words when meeting a new class at the beginning of every semester, whether an introductory physical geology course or a graduate seminar, are always more or less the same: "*Geology does not exist* !". Some students start frantically going over their schedules, wondering whether they are in the right room, but most of them just stare at me, wondering whether I am a lunatic. While they do this I explain that what I meant was that the Earth and other planets are complex systems in which every process can, and must, be dismantled until we can understand it in terms of the simplest possible physics and chemistry. This does little to put them at ease, but over the course of the first few weeks of class many of them come to understand what I mean, and even to agree with it.

This brings me to the several reasons why I decided to write this book. First, although a few good textbooks on thermodynamics applied to Earth systems are available, I find that none of them goes into the fundamentals of thermodynamics with the depth that I am convinced is necessary. Rather, they tend to discuss the foundational principles of thermodynamics on a "need to know" basis. My approach is exactly the opposite: build a solid understanding of the foundations of thermodynamics first, and explain everything else in terms of this understanding. Second, many students in Earth and Planetary Sciences have a tendency to think of our science as standing in splendid isolation of the fundamental sciences, and of the laws of nature that they have painstakingly codified. Yet ultimately everything is physics, and must be understood as such. Third, there is too much of a terrestrial emphasis in all current books on thermodynamics for Earth and Planetary scientists. The diversity of bodies and environments in the Solar System provides a wealth of opportunities to demonstrate the unifying explanatory power of thermodynamics. To name just a few, why not look at cryolavas in Triton and brines on the Martian surface as examples of eutectic melting? At methane-ethane fractionation in Titan's atmosphere and Fe-Ni fractionation during crystallization of planetary cores as examples of binary T-X loops? At the conditions in the Martian mantle to discuss equations of state for solids and the concept of thermal pressure? Or at the evolution of atmospheric composition while making atmospheric mass and gravitational acceleration, and therefore pressure, adjustable parameters? You will find these and other unusual examples in this book. Finally, I think that in order to be complete and useful, a textbook must not only cover the fundamental principles but also show the full details of how those fundamental principles and mathematical relationships are converted to numerical results. In this book I show the derivation of every single equation that is used to obtain numerical estimates, and in those cases in which the equations cannot be solved by hand I include open Maple procedures that you are free to use, modify and expand as far as your interests and abilities will take you.

Throughout the book I try to emphasize the importance of physical intuition and mathematical rigor, and of striking a balance between the two. The book is organized in 14 chapters, some of them more orthodox than others. The table of contents is fairly selfexplanatory, but I wish to highlight some points. The First Law is introduced in Chapter 1,

ix

Х

Preface

but only after a lengthy discussion of conservation laws in general, and other associated concepts. At the end of Chapter 1 there is a discussion of the nature of planetary materials that I believe can be found nowhere else. The Second and Third Laws must wait until Chapter 4, as Chapter 2 focuses on energy conservation, and the discussions of energy dissipation and thermodynamic cycles in Chapter 3 lead more or less naturally to the need for the Second Law. Thermodynamic potentials, including Gibbs free energy, are introduced in Chapter 4 in a mathematically formal way, i.e. I first demonstrate (rigorously) the properties of the Legendre transform, and only then apply it to derive the various thermodynamic potentials. There is no other way that makes sense. Chapter 2 is a thorough quantitative presentation of all sources of planetary internal energy. I know of no comparable treatment anywhere else. Chapter 3 covers heat diffusion and advection in planetary bodies; it is not intended to substitute the various excellent textbooks that are available on this topic (cited in Chapter 3), but rather as a complement that may add some new twists to this fundamental field. The way I define activity in Chapter 5 is unusual, and owes not a small amount to Guggenheim's unique insight, but it is in my view the most mathematically appealing way of doing it (you may feel Guggenheim's presence in this statement too). Discussion of non-ideal activity is focused chiefly on the concept itself, and on the computational difficulties associated with its mathematical representation. There is simply no space to delve in detail into the huge fields of solution theory in crystals (Chapter 5), fluids (Chapter 9), melts (Chapter 10) and electrolyte solutions (Chapter 11), but I hope that I provide enough background for students to be able to jump directly into the relevant research literature. The equations needed to calculate phase boundaries are developed in full and implemented in a series of progressively more complete Maple procedures (Chapters 1, 5, 6, 7, 8 and 9). Feel free to use "black box software" if you wish, but first make sure that you understand where those results come from. I have tried to emphasize the concept of universality of critical behavior by highlighting the similarities among critical mixing phenomena (Chapter 7), lambda phase transitions (Chapter 7) and the critical point of fluids (Chapter 9), without using the word "universality" nor introducing the concept of critical exponents. The interested students should be able to pick it up from here. I emphasize the use of non-dimensional variables as much as possible, including in unusual contexts such as discussion of critical mixing and solvi (Chapter 7), high pressure and temperature behavior of solids (Chapter 8), critical phenomena in fluids (Chapter 9), concentration of non-equilibrium atmospheric species (Chapter 12) and energy dissipation by planetary differentiation (Chapter 2). I have done my best to lay out in simple yet rigorous mathematical terms the sometimes confusing topics of equations of state for solids and thermal pressure (Chapter 8); again, I know of no comparable treatment elsewhere. There is a full discussion of the calculation of species distribution in fluids, both by chemical equilibrium and by Gibbs free energy minimization, including the derivation of all necessary equations and the accompanying implementation in Maple (Chapter 9) – I hope that this will demystify what is no more than relatively simple algebra. Chapter 10 is a somewhat unusual take on igneous petrology. My debt to the work of M. Hirschmann, P. Asimow and E. Stolper should be evident here, but I hope to have added some new insights especially with regards to volatile-fluxed melting. I present "toy models" of ozone depletion (Chapter 12) and greenhouse warming (Chapter 13) as applications of chemical kinetics and radiative heat transfer, respectively. Chapter 12 also contains an introduction to non-equilibrium thermodynamics, that I hope to be able to expand upon in the not too distant future. Finally, there is a simplistic but, I believe, fundamental discussion of the origin of life in Chapter 14.

xi

Preface

All chapters contain Worked Examples. These are also a fundamental part of the text. Do not skip them, or you will miss explanations and discussions that are not repeated elsewhere. There are also Boxes that contain accessory material that may be skipped without loss of continuity, but to which you should return at some point to clarify the contents of the main text. Finally, there are Software Boxes that contain generally succinct documentation for the *Maple* procedures that can be downloaded from the book's website. I plan on updating and adding to these procedures periodically, and any additional documentation or (inevitable) corrections will also be posted on the website. Please feel free to contact me with suggested changes or additions to the *Maple* library. If you use any of these procedures in published work please cite this book as reference. All figures in this book are my original artwork, and were designed to match specifically the associated content in the text – in fact, in not a few occasions the text was written around the figure. I think that this makes the content much more understandable.

Mike Roden read some of the text and made perceptive comments that I did my best to incorporate. Matt Lloyd at Cambridge was instrumental in getting this project started. I wish to express my gratitude to him and all his staff for their support, encouragement, patience and understanding in the face of missed deadlines. In particular, I wish to thank Assistant Editor Laura Clark, Production Editor, Emma Walker and Copy-editor Beverley Lawrence. My wife Marta has been more patient throughout this project than I have any right to expect, and our son Javier has contributed to it more than he knows – all my love to both of you! Writing this book took about three years and would have been impossible without the company and encouragement offered by our cats, Kali and Watson (to the memory of both of whom I dedicate this book), Ajax, Marx and Engels, and Leonidas and Dottie.