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1 Introduction

This book is about writing TinyOS systems and applications in the nesC language. This
chapter gives a brief overview of TinyOS and its intended uses. TinyOS is an open-source
project which a large number of research universities and companies contribute to.
The main TinyOS website, www.tinyos.net, has instructions for downloading and
installing the TinyOS programming environment. The website has a great deal of useful
information which this book doesn’t cover, such as common hardware platforms and
how to install code on a node.

1.1 Networked, embedded sensors

TinyOS is designed to run on small, wireless sensors. Networks of these sensors have the
potential to revolutionize a wide range of disciplines, fields, and technologies. Recent
example uses of these devices include:

Golden Gate Bridge safety High-speed accelerometers collect synchonized data on
the movement of and oscillations within the structure of San Francisco’s Golden Gate
Bridge. This data allows the maintainers of the bridge to easily observe the structural
health of the bridge in response to events such as high winds or traffic, as well as quickly
assess possible damage after an earthquake [10]. Being wireless avoids the need for
installing and maintaining miles of wires.

Volcanic monitoring Accelerometers and microphones observe seismic events on the
Reventador and Tungurahua volcanoes in Ecuador. Nodes locally compare when they
observe events to determine their location, and report aggregate data to a camp several
kilometers away using a long-range wireless link. Small, wireless nodes allow geologists
and geophysicists to install dense, remote scientific instruments [30], obtaining data that
answers other questions about unapproachable environments.

Data center provisioning Data centers and enterprise computing systems require
huge amounts of energy, to the point at which they are placed in regions that have low
power costs. Approximately 50% of the energy in these systems goes into cooling, in
part due to highly conservative cooling systems. By installing wireless sensors across
machine racks, the data center can automatically sense what areas need cooling and
can adjust which computers do work and generate heat [19]. Dynamically adapting
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4 Introduction
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Figure 1.1 A typical sensor network architecture. Patches of ultra-low power sensors, running
nesC/TinyOS, communicate to gateway nodes through data sinks. These gateways
connect to the larger Internet.

these factors can greatly reduce power consumption, making the IT infrastructure more
efficient and reducing environmental impact.

While these three application domains are only a small slice of where networks
of sensors are used, they show the key differences between these networks and most
other computing systems. First, these “sensor networks” need to operate unattended for
long periods of time. Second, they gather data from and respond to an unpredictable
environment. Finally, for reasons of cost, deployment simplicity, and robustness,
they are wireless. Together, these three issues – longevity, embedment, and wireless
communication – cause sensor networks to use different approaches than traditional,
wired, and human-centric or machine-centric systems.

The sheer diversity of sensor network applications means that there are many network
architectures, but a dominant portion of deployments tend to follow a common one,
shown in Figure 1.1 [21, 26, 30] of ultra-low power sensors self-organized to form an
ad-hoc routing network to one or more data sink nodes. These sensor sinks are attached to
gateways, which are typically a few orders of magnitude more powerful than the sensors:
gateways run an embedded form of Linux, Windows, or other multitasking operating
system. Gateways have an Internet connection, either through a cell phone network,
long-distance wireless, or even just wired Ethernet.

Energy concerns dominate sensor hardware and software design. These nodes need to
be wireless, small, low-cost, and operate unattended for long periods. While it is often
possible to provide large power resources, such as large solar panels, periodic battery
replacement, or wall power, to small numbers of gateways, doing so to every one of
hundreds of sensors is infeasible.

1.1.1 Anatomy of a sensor node (mote)

Since energy consumption determines sensor node lifetime, sensor nodes, commonly
referred to as motes, tend to have very limited computational and communication
resources. Instead of a full-fledged 32-bit or 64-bit CPU with megabytes or gigabytes of
RAM, they have 8-bit or 16-bit microcontrollers with a few kilobytes of RAM. Rather
than gigahertz, these microcontrollers run at 1–10 megahertz. Their low-power radios
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1.2 TinyOS 5
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Figure 1.2 A Telos sensor produced by Moteiv. The top of the node has the radio, sensors, and circuitry for
the USB connector. The bottom, not shown, has the processor and flash storage chip. The
antenna is part of the printed circuit board (PCB).

can send tens to hundreds of kilobits per second (kbps), rather than 802.11’s tens of
megabits. As a result, software needs to be very efficient, both in terms of CPU cycles
and in terms of memory use.

Figure 1.2 shows a sample node platform, the Telos , which is designed for easy
experimentation and low-power operation. It has a TI MSP430 16-bit microcontroller
with 10 kB of RAM and 48 kB of flash program memory. Its radio, a TI CC2420 which
follows the IEEE 802.15.4 standard, can send up to 250 kbps. In terms of power, the
radio dominates the system: on a pair of AA batteries, a Telos can have the radio on for
about four days. Lasting longer than four days requires keeping the node in a deep sleep
state most of the time, waking only when necessary, and sleeping as soon as possible.

The other mote discussed in this book, the micaz from Crossbow Technology is similar:
it has an Atmel ATmega128 8-bit microcontroller with 4 kB of RAM, 128 kB of flash
program memory, uses the same CC2420 radio chip, also runs off a pair of AA batteries
and has a similar power consumption profile.

Networks, once deployed, gather data uninterrupted for weeks, months, or years.
As the placement of sensors is very application-specific, it is rare for networks to
need to support multiple concurrent applications, or even require more than the
occasional reprogramming. Therefore, unlike general-purpose computing systems,
which emphasize run-time flexibility and composability, sensor network systems tend
to be highly optimized. Often, the sensor suite itself is selected for the specific
application: volcanic monitoring uses accelerometers and microphones, while data center
provisioning uses temperature sensors.

1.2 TinyOS

TinyOS is a lightweight operating system specifically designed for low-power wireless
sensors. TinyOS differs from most other operating systems in that its design focuses
on ultra low-power operation. Rather than a full-fledged processor, TinyOS is designed
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6 Introduction

for the small, low-power microcontrollers motes have. Furthermore, TinyOS has very
aggressive systems and mechanisms for saving power.

TinyOS makes building sensor network applications easier. It provides a set of
important services and abstractions, such as sensing, communication, storage, and timers.
It defines a concurrent execution model, so developers can build applications out of
reusable services and components without having to worry about unforeseen interactions.
TinyOS runs on over a dozen generic platforms, most of which easily support adding
new sensors. Furthermore, TinyOS’s structure makes it reasonably easy to port to new
platforms.

TinyOS applications and systems, as well as the OS itself, are written in the nesC
language. nesC is a C dialect with features to reduce RAM and code size, enable
significant optimizations, and help prevent low-level bugs like race conditions. Chapter 2
goes into the details on how nesC differs significantly from other C-like languages, and
most of this book is about how to best use those features to write robust, efficient code.

1.2.1 What TinyOS provides

At a high level, TinyOS provides three things to make writing systems and applications
easier:

• a component model, which defines how you write small, reusable pieces of code and
compose them into larger abstractions;

• a concurrent execution model, which defines how components interleave their
computations as well as how interrupt and non-interrupt code interact;

• application programming interfaces (APIs), services, component libraries and an
overall component structure that simplify writing new applications and services.

The component model is grounded in nesC. It allows you to write pieces of reusable
code which explicitly declare their dependencies. For example, a generic user button
component that tells you when a button is pressed sits on top of an interrupt handler. The
component model allows the button implementation to be independent of which interrupt
that is – e.g. so it can be used on many different hardware platforms – without requiring
complex callbacks or magic function naming conventions. Chapter 2 and Chapter 3
describe the basic component model.

The concurrent execution model enables TinyOS to support many components needing
to act at the same time while requiring little RAM. First, every I/O call in TinyOS is
split-phase: rather than block until completion, a request returns immediately and the
caller gets a callback when the I/O completes. Since the stack isn’t tied up waiting
for I/O calls to complete, TinyOS only needs one stack, and doesn’t have threads.
Instead, Chapter 5 introduces tasks, which are lightweight deferred procedure calls. Any
component can post a task, which TinyOS will run at some later time. Because low-power
devices must spend most of their time asleep, they have low CPU utilization and so in
practice tasks tend to run very soon after they are posted (within a few milliseconds).
Furthermore, because tasks can’t preempt each other, task code doesn’t need to worry
about data races. Low-level interrupt code (discussed in the advanced concurrency
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1.3 Example application 7

chapter, Chapter 11) can have race conditions, of course: nesC detects possible data
races at compile-time and warns you.

Finally, TinyOS itself has a set of APIs for common functionality, such as sending
packets, reading sensors, and responding to events. Uses of these are sprinkled
throughpout the entire book, and presented in more detail in Chapter 6 and Appendix 1.
In addition to programming interfaces, TinyOS also provides a component structure and
component libraries. For example, Chapter 12 describes TinyOS’s HardwareAbstraction
Architecture (HAA), which defines how to build up from low-level hardware (e.g. a
radio chip) to a hardware-independent abstraction (e.g. sending packets). Part of this
component structure includes resource locks, covered in Chapter 11, which enable
automatic low-power operation, as well as the component libraries that simplify writing
such locks.

TinyOS itself is continually evolving. Within the TinyOS community, “Working
Groups” form to tackle engineering and design issues within the OS, improving existing
services and adding new ones. This book is therefore really a snapshot of the OS in
time. As Chapter 12 discusses and Appendix 1 presents, TinyOS has a set of standard,
stable APIs for core abstractions, but this set is always expanding as new hardware and
applications emerge. The best way to stay up to date with TinyOS is to check its web page
www.tinyos.net and participate in its mailing lists. The website also covers advanced
TinyOS and nesC features which are well beyond the scope of this book, including
binary components, over-the-air reprogramming services, debugging tools, and a nesC
reference manual.

1.3 Example application

To better understand the unique challenges faced by sensor networks, we walk through a
basic data-collection application. Nodes running this application periodically wake up,
sample some sensors, and send the data through an ad hoc collection tree to a data sink
(as in Figure 1.1). As the network must last for a year, nodes spend 99% of their time in
a deep sleep state.

In terms of energy, the radio is by far the most expensive part of the node. Lasting a year
requires telling the radio to be in a low power state. Low power radio implementation
techniques are beyond the scope of this book, but the practical upshot is that packet
transmissions have higher latency. [23]

Figure 1.3 shows the four TinyOS APIs the application uses: low power settings for
the radio, a timer, sensors, and a data collection routing layer. When TinyOS tells the
application that the node has booted, the application code configures the power settings
on the radio and starts a periodic timer. Every few minutes, this timer fires and the
application code samples its sensors. It puts these sensor values into a packet and calls
the routing layer to send the packet to a data sink. In practice, applications tend to be
more complex than this simple example. For example, they include additional services
such as a management layer which allows an administrator to reconfigure parameters
and inspect the state of the network, as well as over-the-air programming so the network
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8 Introduction

Application

Timer RoutingSensors Radio

Figure 1.3 Example application architecture. Application code uses a timer to act periodically, sensors to
collect data, and a routing layer to deliver data to a sink.

can be reprogrammed without needing to collect all of the nodes. However, these four
abstractions – power control, timers, sensors, and data collection – encompass the entire
datapath of the application.

1.4 Compiling and installing applications

You can download the latest TinyOS distribution, the nesC compiler, and other tools at
www.tinyos.net. Setting up your programming environment is outside the scope of
this book; the TinyOS website has step-by-step tutorials to get you started. One part of
TinyOS is an extensive build system for compiling applications. Generally, to compile a
program for a sensor platform, one types make <platform>, e.g. make telosb.
This compiles a binary. To install that binary on a node, you plug the node into your
PC using a USB or serial connection, and type make <platform> install. The
tutorials go into compilation and installation options in detail.

1.5 The rest of this book

The rest of this book goes into how to program in nesC and write TinyOS applications.
It is divided into three parts. The first is a short introduction to the major programming
concepts of nesC. The second part addresses basic application programming using
standard TinyOSAPIs. The third part digs a little deeper, and looks into how those TinyOS
APIs are implemented. For example, the third part describes how TinyOS abstracts
hardware, so you can write a driver for a new sensor.

Chapter by chapter, the book is structured as follows:

• Chapter 1 is this chapter.
• Chapter 2 describes the major way that nesC breaks from C and C-like languages:

how programs are built out of components, and how components and interfaces help
manage programs’ namespaces.

• Chapter 3 presents components and how they interact via interfaces.
• Chapter 4 goes into greater detail into configurations, components which connect

other components together.
• Chapter 5 covers the basic TinyOS execution model and gives guidance on how and

when to use tasks.
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1.5 The rest of this book 9

• Chapter 6 takes the material from the prior three chapters and brings it together into
an example of writing a fully-fledged application that sends an alarm when a node
observes a change in its environment. In the process, it covers the major TinyOS APIs
(timing, sensing, communication, and storage).

• Chapter 7 details the PC-side tools for communicating with nodes connected over
the serial port, and covers the TinyOS serial stack and packet formats.

• Chapter 8 introduces more advanced component topics, such as parameterized
interfaces and attributes. While applications typically don’t use these mechanisms,
they are indispensable when writing reusable libraries and systems.

• Chapter 9 goes into wiring parameterized interfaces, which form the basis for most
reusable systems. After describing the basic mechanisms for managing interface keys,
it goes through four examples of increasing complexity.

• Chapter 10 presents eight common TinyOS design patterns: commonly useful and
powerful ways of organizing components.

• Chapter 11 concludes the advanced programming topics by covering concurrency. It
describes asynchronous code, the TinyOS task model, and power locks.

• Chapter 12 describes the Hardware Abstraction Architecture (HAA), the
three-level hierarchy TinyOS uses to raise low-level hardware abstractions to
hardware-independent, application-level services.

• Chapter 13 goes step-by-step through an advanced application that identifies the
location of an event based on when nodes sense it. It uses lower-layer interfaces to
implement time synchronization and high-frequency sampling.

• Appendix gives a concise overview of major TinyOS application interfaces.

Throughout the book, you will find programming hints: general best-use practices
that we’ve distilled from the many users of TinyOS and nesC. These are all listed on the
sheet at the front of the book.

Finally, the complete source code for example applications presented in this book (in
Chapters 6, 7 and 13) is available in TinyOS’s contributed code directory, under the name
“TinyOS Programming” – see www.tinyos.net for details.
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2 Names and program structure

Program structure is the most essential and obvious difference between C and nesC.
C programs are composed of variables, types, and functions defined in files that are
compiled separately and then linked together. nesC programs are built out of components
that are connected (“wired”) by explicit program statements; the nesC compiler connects
and compiles these components as a single unit. To illustrate and explain these differences
in how programs are built, we compare and contrast C and nesC implementations of two
very simple “hello world”-like mote applications, Powerup (boot and turn on a LED)
and Blink (boot and repeatedly blink a LED).

2.1 Hello World!

The closest mote equivalent to the classic “Hello World!” program is the “Powerup”
application that simply turns on one of the motes LEDs at boot, then goes to sleep.

A C implementation of Powerup is fairly simple:

#include "mote.h"

int main()

{

mote_init ();

led0_on ();

sleep ();

}

Listing 2.1 Powerup in C

The Powerup application is compiled and linked with a “mote” library which provides
functions to perform hardware initialization (mote_init), LED control (led0_on) and put
the mote in to a low-power sleep mode (sleep). The “mote.h” header file simply provides
declarations of these and other basic functions. The usual C main function is called
automatically when the mote boots.1

1 The C compiler, library, and linker typically arrange for this by setting the mote’s hardware reset vector to
point to a piece of assembly code that sets up a C environment, then calls main.
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2.1 Hello World! 11

The nesC implementation of Powerup is split into two parts. The first, the PowerupC
module, contains the executable logic of Powerup (what there is of it …):

module PowerupC {

uses interface Boot;

uses interface Leds;

}

implementation {

event void Boot.booted () {

call Leds.led0On ();

}

}

Listing 2.2 PowerupC module in nesC

This code says that PowerupC interacts with the rest of the system via two interfaces,
Boot and Leds, and provides an implementation for the booted event of the Boot
interface that calls the led0On2 command of the Leds interface. Comparing with the
C code, we can see that the booted event implementation takes the place of the main
function, and the call to the led0On command the place of the call to the led0_on library
function.

This code shows two of the major differences between nesC and C: where C programs
are composed of functions, nesC programs are built out of components that implement a
particular service (in the case of PowerupC, turning a LED on at boot-time). Furthermore,
C functions typically interact by calling each other directly, while the interactions
between components are specified by interfaces: the interface’s user makes requests
(calls commands) on the interface’s provider, the provider makes callbacks (signals
events) to the interface’s user. Commands and events themselves are like regular
functions (they can contain arbitrary C code); calling a command or signaling an event
is just a function call. PowerupC is a user of both Boot and Leds; the booted event is
a callback signaled when the system boots, while the led0On is a command requesting
that LED 0 be turned on.

nesC interfaces are similar to Java interfaces, with the addition of a command or
event keyword to distinguish requests from callbacks:

interface Boot} {

event void} booted ();

}

interface Leds {

command void led0On ();

command void led0Off ();

2 LEDs are numbered in TinyOS, as different platforms have different color LEDs.
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