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Preface: the pursuit of symmetries

Symmetric objects are so singular in the natural world that our ancestors must have
noticed them very early. Indeed, symmetrical structures were given special magical
status. The Greeks’ obsession with geometrical shapes led them to the enumeration
of platonic solids, and to adorn their edifices with various symmetrical patterns.
In the ancient world, symmetry was synonymous with perfection. What could be
better than a circle or a sphere? The Sun and the planets were supposed to circle
the Earth. It took a long time to get to the apparently less than perfect ellipses!

Of course most shapes in the natural world display little or no symmetry, but
many are almost symmetric. An orange is close to a perfect sphere; humans are
almost symmetric about their vertical axis, but not quite, and ancient man must
have been aware of this. Could this lack of exact symmetry have been viewed as a
sign of imperfection, imperfection that humans need to atone for?

It must have been clear that highly symmetric objects were special, but it is a
curious fact that the mathematical structures which generate symmetrical patterns
were not systematically studied until the nineteenth century. That is not to say that
symmetry patterns were unknown or neglected, witness the Moors in Spain who
displayed the seventeen different ways to tile a plane on the walls of their palaces!

Évariste Galois in his study of the roots of polynomials of degree larger than four,
equated the problem to that of a set of substitutions which form that mathemati-
cal structure we call a group. In physics, the study of crystals elicited wonderfully
regular patterns which were described in terms of their symmetries. In the twenti-
eth century, with the advent of Quantum Mechanics, symmetries have assumed a
central role in the study of Nature.

The importance of symmetries is reinforced by the Standard Model of elemen-
tary particle physics, which indicates that Nature displays more symmetries in
the small than in the large. In cosmological terms, this means that our Universe
emerged from the Big Bang as a highly symmetrical structure, although most of
its symmetries are no longer evident today. Like an ancient piece of pottery, some
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2 Preface: the pursuit of symmetries

of its parts may not have survived the eons, leaving us today with its shards. This
is a very pleasing concept that resonates with the old Greek ideal of perfection.
Did our Universe emerge at the Big Bang with perfect symmetry that was pro-
gressively shattered by cosmological evolution, or was it born with internal defects
that generated the breaking of its symmetries? It is a profound question which some
physicists try to answer today by using conceptual models of a perfectly symmetric
universe, e.g. superstrings.

Some symmetries of the natural world are so commonplace, that they are diffi-
cult to identify. The outcome of an experiment performed by undergraduates should
not depend on the time and location of the bench on which it was performed. Their
results should be impervious to shifts in time and space, as consequences of time
and space translation invariances, respectively. But there are more subtle mani-
festations of symmetries. The great Galileo Galilei made something of a “trivial”
observation: when your ship glides on a smooth sea with a steady wind, you can
close your eyes and not “feel” that you are moving. Better yet, you can perform
experiments whose outcomes are the same as if you were standing still! Today, you
can leave your glass of wine while on an airplane at cruising altitude without fear
of spilling. The great genius that he was elevated this to his principle of relativity:
the laws of physics do not depend on whether you are at rest or move with constant
velocity! However, if the velocity changes, you can feel it (a little turbulence will
spill your wine). Our experience of the everyday world appears complicated by the
fact that it is dominated by frictional forces; in a situation where their effect can
be neglected, simplicity and symmetries (in some sense analogous concepts) are
revealed.

According to Quantum Mechanics, physics takes place in Hilbert spaces. Bizarre
as this notion might be, we have learned to live with it as it continues to be
verified whenever experimentally tested. Surely, this abstract identification of a
physical system with a state vector in Hilbert space will eventually be found to be
incomplete, but in a presently unimaginable way, which will involve some other
weird mathematical structure. That Nature uses the same mathematical structures
invented by mathematicians is a profound mystery hinting at the way our brains are
wired. Whatever the root cause, mathematical structures which find natural repre-
sentations in Hilbert spaces have assumed enormous physical interest. Prominent
among them are groups which, subject to specific axioms, describe transformations
in these spaces.

Since physicists are mainly interested in how groups operate in Hilbert spaces,
we will focus mostly on the study of their representations. Mathematical concepts
will be introduced as we go along in the form of scholia sprinkled throughout the
text. Our approach will be short on proofs, which can be found in many excellent
textbooks. From representations, we will focus on their products and show how
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Preface: the pursuit of symmetries 3

to build group invariants for possible physical applications. We will also discuss
the embeddings of the representations of a subgroup inside those of the group.
Numerous tables will be included.

This book begins with the study of finite groups, which as the name indicates,
have a finite number of symmetry operations. The smallest finite group has only
two elements, but there is no limit as to their number of elements: the permuta-
tions on n letters form a finite group with n! elements. Finite groups have found
numerous applications in physics, mostly in crystallography and in the behavior of
new materials. In elementary particle physics, only small finite groups have found
applications, but in a world with extra dimensions, and three mysterious families
of elementary particles, this situation is bound to change. Notably, the sporadic
groups, an exceptional set of twenty-six finite groups, stand mostly as mathematical
curiosities waiting for an application.

We then consider continuous symmetry transformations, such as rotations by
arbitrary angles, or open-ended time translation, to name a few. Continuous trans-
formations can be thought of as repeated applications of infinitesimal steps,
stemming from generators. Typically these generators form algebraic structures
called Lie algebras. Our approach will be to present the simplest continuous groups
and their associated Lie algebras, and build from them to the more complicated
cases. Lie algebras will be treated à la Dynkin, using both Dynkin notation and
diagrams. Special attention will be devoted to exceptional groups and their repre-
sentations. In particular, the Magic Square will be discussed. We will link back to
finite groups, as most can be understood as subgroups of continuous groups.

Some non-compact symmetries are discussed, especially the representations
of space-time symmetries, such as the Poincaré and conformal groups. Group-
theoretic aspects of the Standard Model and Grand Unification are presented as
well. The algebraic construction of the five exceptional Lie algebras is treated in
detail. Two generalizations of Lie algebras are also discussed, super-Lie algebras
and their classification, and infinite-dimensional affine Kac–Moody algebras.

I would like to express my gratitude to the Institute for Advanced Study and
the Aspen Center for Physics for their hospitality, where a good part of this book
was written. I would like to thank Professors L. Brink and J. Patera, as well as
Drs. D. Belyaev, Sung-Soo Kim, and C. Luhn, for their critical reading of the
manuscript, and many useful suggestions. Finally, I owe much to my wife Lillian,
whose patience, encouragements, and understanding made this book possible.
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2

Finite groups: an introduction

Symmetry operations can be discrete or continuous. Easiest to describe are the dis-
crete symmetry transformations. In this chapter we lay out notation and introduce
basic concepts in the context of finite groups of low order. The simplest symmetry
operation is reflection (parity):

P : x → x ′ = − x .

Doing it twice produces the identity transformation

I : x → x ′ = x,

symbolically

P P = I.

There are many manifestations of this symmetry operation. Consider the isosceles
triangle. It is left the same by a reflection about its vertical axis. In geometry this
operation is often denoted as σ . It takes place in the x–y plane, and you will see it
written as σz which denotes a reflection in the x–y plane.

The second simplest symmetry operation is rotation. In two dimensions, it is
performed about a point, but in three dimensions it is performed about an axis.
A square is clearly left invariant by an anti-clockwise rotation about its center by
90◦. The inverse operation is a clockwise rotation. Four such rotations are akin to
the identity operation. Generally, anti-clockwise rotations by (2π/n) generate the
cyclic group Zn when n is an integer. Repeated application of n such rotations is the
identity operation. It is only in two dimensions that a reflection is a 180◦ rotation.

A third symmetry operation is inversion about a point, denoted by i . Geomet-
rically, it involves a reflection about a plane together with a 180◦ rotation in the
plane. Symbolically

i = σh Rot(180◦).
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2.1 Group axioms 5

Reflections and inversions are sometimes referred to as improper rotations. They
are rotations since they require a center of symmetry.

The symmetry operations which leave a given physical system or shape invariant
must satisfy a number of properties: (1) a symmetry operation followed by another
must be itself a symmetry operation; (2) although the order in which the symmetry
operations are performed is important, the symmetry operations must associate;
(3) there must be an identity transformation, which does nothing; and (4) whatever
operation transforms a shape into itself, must have an inverse operation. These
intuitive considerations lead to the group axioms.

2.1 Group axioms

A group G is a collection of operators,

G : { a1, a2, . . . , ak, . . . }
with a “�” operation with the following properties.

Closure. For every ordered pair of elements, ai and a j , there exists a unique
element

ai � a j = ak, (2.1)

for any three i, j, k.

Associativity. The � operation is associative

( ai � a j ) � ak = ai � ( a j � ak ). (2.2)

Unit element. The set G contains a unique element e such that

e � ai = ai � e = ai , (2.3)

for all i . In particular, this means that

e � e = e.

Inverse element. Corresponding to every element ai , there exists a unique element
of G, the inverse (ai )

−1 such that

ai � (ai )
−1 = (ai )

−1 � ai = e. (2.4)

When G contains a finite number of elements

(G : a1, a2, . . . , ak, . . . , an )

it is called a finite group, and n is called the order of the group.
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6 Finite groups: an introduction

In the following we will discuss groups with a finite number of elements, but
we should note that there are many examples of groups with an infinite number of
elements; we now name a few.

• The real numbers, including zero, constitute an infinite group under addition (� → +).
Its elements are the zero, the positive and the negative real numbers. Closure is satisfied:
if x and y are real numbers, so is their sum x + y. Each x has an inverse −x , such that

x + (−x) = 0, x + 0 = 0 + x,

and we see that the zero plays the role of the unit element.
• The real numbers also form a group under multiplication (� → ×). Indeed xy is a real

number. The inverse of x is 1/x , and the unit element is 1. In this case, zero is excluded.
• The rational numbers of the form n

m , where m and n are non-zero integers also form a
group under multiplication, as can easily be checked.

2.2 Finite groups of low order

We begin by discussing the finite groups of order less than thirteen (see Ledermann
[14]). In the process we will introduce much notation, acquaint ourselves with
many useful mathematical concepts, and be introduced to several ubiquitous groups
and to the different aspects of their realizations.

Group of order 2

We have already encountered the unique group, called Z2, with two elements. One
element is the identity operation, e, and the second element a must be its own
inverse, leading to the following multiplication table.

Z2 e a

e e a
a a e

It can serve many functions, depending on the physical situation: a can be the
parity operation, the reflection about an axis, a 180◦ rotation, etc.

Group of order 3

There is only one group of order 3. This is easy to see: one element is the identity e.
Let a1 be its second element. The group element a1 � a1 must be the third element
of the group. Otherwise a1 � a1 = a1 leads to a1 = e, or the second possibility
a1�a1 = e closes the group to only two elements. Hence it must be that a1�a1 = a2,
the third element, so that a1 � a2 = a2 � a1. It is Z3, the cyclic group of order three,
defined by its multiplication table.
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2.2 Finite groups of low order 7

Z3 e a1 a2

e e a1 a2
a1 a1 a2 e
a2 a2 e a1

It follows that

a1 � a1 � a1 = e,

which means that a1 is an element of order three, and represents a 120◦ rotation.
It should be obvious that these generalize to arbitrary n, Zn , the cyclic group of

order n. It is generated by the repeated action of one element a of order n

Zn : { e , a , a � a , a � a � a , . . . , (a � a � · · · a � a)n−1 },
with

(a � a � · · · a � a)k ≡ ak, an = e.

If we write its different elements as a j = a j−1, we deduce that ai � a j = a j � ai .
A group for which any two of its elements commute with one another is called
Abelian. Groups which do not have this property are called non-Abelian.

Groups of order 4

It is equally easy to construct all possible groups with four elements
{ e, a1, a2, a3 }. There are only two possibilities.

The first is our friend Z4, the cyclic group of order four, generated by 90◦ rota-
tions. We note that the generator of this cyclic group has the amusing realization

a : z → z′ = i z, (2.5)

where z is a complex number. It is easy to see that a is an element of order four
that generates Z4.

The second group of order four, is the dihedral group D2, with the following
multiplication table.

D2 e a1 a2 a3

e e a1 a2 a3
a1 a1 e a3 a2
a2 a2 a3 e a1
a3 a3 a2 a1 e

It is Abelian, since the multiplication table is symmetrical about its diagonal. It
is sometimes called V (Vierergruppe) or Klein’s four-group.
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8 Finite groups: an introduction

It is the first of an infinite family of groups called the dihedral groups of order
2n, Dn . They have the simple geometrical interpretation of mapping a plane poly-
gon with n vertices into itself. The case n = 2 corresponds to the invariance group
of a line: a line is left invariant by two 180◦ rotations about its midpoint, one about
the axis perpendicular to the plane of the line, the other about the axis in the plane
of the line. It is trivially invariant under a rotation about the line itself. The mul-
tiplication table shows three elements of order two, corresponding to these three
180◦ rotations about any three orthogonal axes in three dimensions. It has many
other realizations, for instance in terms of (2 × 2) matrices(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(−1 0
0 1

)
,

(−1 0
0 −1

)
. (2.6)

An interesting realization involves functional dependence. Consider the four
mappings (functions)

f1(x) = x, f2(x) = −x, f3(x) = 1

x
, f4(x) = −1

x
. (2.7)

It is easily verified that they close on D2. These two groups are distinct since Z4

has an element of order four and D2 does not.
Groups of order four share one feature that we have not yet encountered: a subset

of their elements forms a group, in this case Z2. The subgroup within Z4 is Z2,
generated by ( e, a2 ), expressed as

Z4 ⊃ Z 2.

As for D2, it contains three Z2 subgroups, generated by ( e, a1 ), ( e, a2 ), and
( e, a3 ), respectively. Since a2 � a1 = a1 � a2, the elements of the first two Z2

commute with one another, and we can express D2 as the direct product of the first
two commuting subgroups

D2 = Z2 × Z2. (2.8)

This is the first and simplest example of a general mathematical construction.

Scholium. Direct product

Let G and K be two groups with elements {ga}, a = 1, . . . , ng and {ki },
i = 1, . . . , nk , respectively. We assemble new elements ( ga, ki ), with multiplica-
tion rule

( ga, ki ) ( gb, k j ) = ( ga � gb, ki � k j ). (2.9)

They clearly satisfy the group axioms, forming a group of order ngnk called the
direct (Kronecker) product group G×K. Since G and K operate in different spaces,
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2.2 Finite groups of low order 9

they can always be taken to be commuting subgroups, and the elements of the direct
product can be written simply as gaki . This construction provides a simple way to
generate new groups of higher order.

Scholium. Lagrange’s theorem

This theorem addresses the conditions for the existence of subgroups. Consider a
group G with elements {ga}, a = 1, 2, . . . , N , that contains a subgroup H with n
elements ( h1, h2, . . . , hn ) ≡ {hi }, i = 1, 2, . . . , n < N ,

G ⊃ H.

Pick an element g1 of G that is not in the subgroup H. The n elements of the form
g1 � hi are of course elements of G, but not of the subgroup H. If any of them were
in H, we would have for some i and j

g1 � hi = h j ,

but this would imply that

g1 = h j � (hi )
−1

is an element of H, contradicting our hypothesis: the two sets {hi } and {g1 � hi }
have no element in common. Now we repeat the procedure with another element
of G, g2, not in H, nor in g1H. The new set {g2 � hi } is distinct from both {hi } and
{g1 � hi }, for if they overlap, we would have for some i and j

g1 � hi = g2 � h j .

This would in turn imply that g2 = g1 � hk, contradicting our hypothesis. We
proceed in this way until we run out of group elements after forming the last set
{gk � hi }. Hence we can write the full G as a (right) coset decomposition

G = {hi } + {g1 � hi } + · · · + {gk � hi }
≡ H + g1 � H + · · · + gk � H, (2.10)

in which none of the sets overlap: the order of G must therefore be a multiple of
the order of its subgroup. Hence we have Lagrange’s theorem.

If a group G of order N has a subgroup H of order n, then N is necessarily an integer
multiple of n

The integer ratio k = N/n is called the index of H in G. This theorem is about to
save us a lot of work.
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10 Finite groups: an introduction

Let a be an element of a finite group G, and form the sequence

a, a2, a3, . . . , ak, . . . ,

all of which are elements of G. Since it is finite not all can be different, and we
must have for some k > l

ak = al → ak−l = e,

that is some power of any element of a finite group is equal to the identity element.
When an = e, we say that a is an element of order n. Let k be the order of any
element b of G; it generates the cyclic subgroup Zk of G. By Lagrange’s theorem,
k must be a multiple of n, the order of the group G.

As a second application, let G be a group of prime order p. Since a prime has
no divisor, the order of any of its elements must be either one or p itself. Hence it
must be that G = Zp: we do not need to construct groups of order 5, 7, 11, . . .,
they are all cyclic, and Lagrange’s theorem tells us that the cyclic groups of prime
order have no subgroup.

Groups of order 6

From what we have just learned, we know that there are at least two groups of order
six: the cyclic group Z6, generated by 60◦ rotations, and the direct product group
Z2 × Z3, but they are the same. To see this, let a and b be the generators of Z3

and Z2, respectively, that is a3 = b2 = e, and ab = ba. Consider the element ab
of Z2 × Z3. Clearly, (ab)3 = b, so that (ab)6 = (b2) = (e), and ab is of order six.
Hence both have an element of order six, and necessarily the two groups must be
isomorphic to one another

Z6 = Z2 × Z3. (2.11)

This is true only because the two factors are relatively primes.
Any other group of order six must contain an order-three element a (a3 = e). If

b is a different element, we find six elements ( e, a, a2, b, ab, a2 b ). It is easily
seen that all must be distinct: they must form a group of order six.

In particular the element b2 must be e, a or a2. The latter two choices imply
that b is of order three, and lead to a contradiction. Hence b must be an element of
order two: b2 = e. Now we look at the element ba. It can be either ab or a2b. If
ba = ab, we find that ab must be of order six, a contradiction. Hence this group is
non-Abelian. By default it must be that ba = a2b; the multiplication table is now
fixed to yield the following dihedral group.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89603-0 - Group Theory: A Physicist’s Survey
Pierre Ramond
Excerpt
More information

http://www.cambridge.org/9780521896030
http://www.cambridge.org
http://www.cambridge.org

