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Basic concepts of dynamical systems theory

Everything should be made as simple as possible, but not simpler.

Albert Einstein

1.1 Deterministic systems

Since the Pythagorean attempts to explain the tangible world by means of numer-

ical quantities related to integer numbers, western culture has been characterized

by the idea that Nature can be described by mathematics. This idea comes from

the explicit or hidden assumption that the world obeys some precise rules. It may

appear obvious today, but the systematic application of mathematics to the study of

natural phenomena dates from the seventeenth century when Galileo inaugurated

modern physics with the publication of his major work Discorsi e Dimostrazioni

Matematiche Intorno a Due Nuove Scienze (Discourses and Mathematical Demon-

strations Concerning Two New Sciences) in 1638. The fundamental step toward

the mathematical formalization of reality was taken by Newton and his mechanics,

explained in Philosophiae Naturalis Principia Mathematica (The Mathematical

Principles of Natural Philosophy), often referred to as the Principia, published in

1687. This was a very important date not only for the philosophy of physics but

also for all the other sciences; this great work can be considered to represent the

high point of the scientific revolution, in which science as we know it today was

born. From the publication of the Principia to the twentieth century, for a large

community of scientists the main goal of physics has been the reduction of natu-

ral phenomena to mechanical laws. A natural phenomenon was considered really

understood only when it was explained in terms of mechanical movements.

The idea of determinism was established in a rather vivid way by Pierre Simon de

Laplace (1814), in his book Essai Philosophique sur les Probabilités (Philosophical

Essay on Probability):
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2 Basic concepts of dynamical systems theory

We must consider the present state of Universe as the effect of its past state and the cause of its

future state. An intelligence that would know all forces of nature and the respective situation

of all its elements, if furthermore it was large enough to be able to analyze all these data,

would embrace in the same expression the motions of the largest bodies of Universe as well

as those of the slightest atom: nothing would be uncertain for this intelligence, all future

and all past would be as known as present.

This statement has been a point of reference for scientific thought: a good sci-

entific theory has to describe a natural phenomenon using mathematical methods.

Once the temporal evolution equations of the phenomenon are written and the initial

conditions are determined, the state of the system can be known at each future time

by solving the equations. However, we would like to emphasize that Laplace was

not naive at all about the true relevance of determinism (see later), as has sometimes

been asserted by some writers of popular science.

1.1.1 Dynamical systems

Let us now introduce the notion of dynamical system. A deterministic dynamical

system is essentially described by:

(a) the phase space �, containing the vectors x that determine, in a quantitative way, all

the possible states of the system;

(b) an evolution law U (t, t0), i.e. a rule that allows us to determine the state x(t) of the

system at time t , given the state x(t0) at time t0. Formally we can write

x(t) = U (t, t0)x(t0) = U (t − t0)x(t0) ≡ U t−t0 x(t0),

where, in the second equality, the stationarity of the evolution rule has been assumed,

i.e. the system undergoes the same evolution from a given state x0, independently from

the time it is found in x0. Moreover, U t is a semigroup, that is U r+s
= U rU s (r, s > 0)

and U 0
= I , i.e. x(t0) = U 0

x(t0).

The state of the system is typically specified by a d-dimensional vector x, whose

d components x1, x2, . . . , xd , are called the degrees of freedom of the system. An

elementary example is given by the pendulum, whose state is determined by the

angle θ to the vertical and the angular velocity ω = dθ/dt ; therefore the phase

space is a cylindrical surface defined by θ ∈ [0, 2π ] and ω ∈ [−∞, +∞]: all the

states of the pendulum are represented by points on this surface.

The most common deterministic evolution laws are maps and differential equa-

tions. In the first case the time is a discrete variable and the evolution law reads

x(t + 1) = g[x(t)] (1.1)
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1.1 Deterministic systems 3

corresponding to the following system of d equations

x1(t + 1) = g1[x1(t), x2(t), . . . , xd(t)]

· · · · · · · · · (1.2)

xd(t + 1) = gd[x1(t), x2(t), . . . , xd(t)].

In the case of differential equations the time is a continuous variable and the evo-

lution law is prescribed as

dx(t)

dt
= f [x(t)] (1.3)

which corresponds to the system of equations

d

dt
x1(t) = f1[x1(t), x2(t), . . . , xd(t)]

· · · · · · · · · (1.4)

d

dt
xd(t) = fd[x1(t), x2(t), . . . , xd(t)].

The functions g and f in (1.1) and (1.3) do not contain an explicit time dependence,

as a consequence of the stationarity assumption on the evolution. This assumption

is not a severe limitation. A system can be made formally time independent by

increasing by one unit the number of degrees of freedom.

The deterministic nature of the maps (1.1) is evident: given the initial state x(t0),

the state x(t) at time t > t0 = t − n is given by

x(t) = g [x(t − 1)] = g [g [x(t − 2)]] = · · · = g(n)[x(t0)], (1.5)

where g(2)(x) = g [g [x]] , . . . , g(n)(x) = g
[

g(n−1) [x]
]

.

The deterministic nature of the differential equations (1.3) is assured, under quite

general conditions, by the existence and unicity theorem of the solution to a system

of ordinary differential equations (Arnold 1974).

In particular, if f1(x1, . . . , xd), . . . , fd(x1, . . . , xd) are linear functions of the

variables x1, . . . , xd ,

f1(x1, . . . , xd) = a11x1 + a12x2 + · · · + a1d xd

· · · · · · · · · (1.6)

fd(x1, . . . , xd) = ad1x1 + ad2x2 + · · · + add xd,

and if the ai j coefficients are constant, the solution of the system can be easily

written in an explicit form (Arnold 1974):

x(t) = eAt x(0), (1.7)
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4 Basic concepts of dynamical systems theory
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Figure 1.1 The generation of the Poincaré map by means of the Poincaré surface
of section method in a three-dimensional flow.

where A is the matrix whose elements are {ai j }. An analogous result holds for linear

map systems.

It is not difficult to understand that the maps and the differential equation systems

are not completely disconnected representations of dynamical systems. For exam-

ple, we can consider the simplest algorithm for the numerical integration of (1.4),

i.e. the Euler scheme, to compute x(t + τ ) from x(t) with τ small enough: applying

the definition of derivative, and neglecting terms of order τ 2, one obtains the

map

x1(t + τ ) = x1(t) + f1[x1(t), x2(t), . . . , xd(t)]τ

· · · · · · · · · (1.8)

xd(t + τ ) = xd(t) + fd[x1(t), x2(t), . . . , xd(t)]τ.

Of course the Euler scheme is not very accurate. Nevertheless, more precise algo-

rithms, for example the popular Runge–Kutta method, are nothing but maps which

determine x(t + τ ) from x(t). Another way to reduce a continuous time dynamical

system (or “flow”) to a discrete time map is through the Poincaré surface of section

method. If we consider the d-dimensional flow (1.4), the Poincaré map gives its re-

duction to a (d − 1)-dimensional map. For illustrative purposes, consider the three-

dimensional case. The trajectory x(t) crosses the plane x3 = h with dx3/dt < 0,

the Poincaré surface, in the points P(0), P(1), . . . , P(n) at times t0, t1, . . . , tn (see

Figure 1.1). Since the point x(tn+1) = (x1(tn+1), x2(tn+1), h) is determined uniquely

by the point x(tn), one has a deterministic rule connecting P(n) with P(n + 1), i.e.
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1.1 Deterministic systems 5

the Poincaré map which describes the evolution of the system on the plane:

P(n + 1) = g[P(n)]. (1.9)

In general the explicit form of the Poincaré map associated with a given ordinary

differential equation is not known, however its existence is useful for characterizing

the behavior of the flow. For example, if the continuous time dynamical system

is periodic, there will be only a finite number of isolated points on the Poincaré

section. If the trajectory is quasi-periodic,1 then there will be a regular closed figure,

while if the trajectory is very irregular, there will be a non-structured set of points.

1.1.2 Attractors

The dynamical systems can be divided into two large classes: the conservative

and the dissipative systems. A conservative dynamical system preserves the volume

of the phase space. That is, given a regionA0, whose volume is V0, the points evolved

from A0 define a region At whose volume is Vt = V0. This property is translated

in differential terms as
∣

∣

∣

∣

det

[

∂

∂xi

g j (x)

]
∣

∣

∣

∣

= 1 for maps, (1.10)

and

∇ · f =

d
∑

i=1

∂

∂xi

fi (x) = 0 for flows. (1.11)

An important example of a conservative system is given by Hamilton’s equations for

the motion of particles without friction. In contrast, a dissipative dynamical system

does not preserve the volume of the phase space, i.e. Vt < V0. The mathematical

formulation of the contraction of the phase space in differential form is
∣

∣

∣

∣

det

[

∂

∂xi

g j (x)

]∣

∣

∣

∣

< 1 for maps, (1.12)

and

∇ · f =

d
∑

i=1

∂

∂xi

fi (x) < 0 for flows. (1.13)

1 An N -frequency quasi-periodic motion can be represented by N independent variables, f1(t), f2(t), . . . , fN (t),
such that each fk is periodic with period Tk and the N frequencies �i = 2π/Ti are incommensurate, that
is, the relation m1�1 + m2�2 + · · · + m N �N = 0 does not hold for any set of integers, m1, m2, . . . , mN ,
except for the trivial solution m1 = m2 = · · · = m N = 0. A two-frequency quasi-periodic motion lies on a
two-dimensional torus.
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6 Basic concepts of dynamical systems theory
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Figure 1.2 Example of a simple attractor: a stable fixed point.

A simple example of a dissipative system is the one-dimensional damped harmonic

oscillator

d2x

dt2
+ ν

dx

dt
+ ω2x = 0.

Because of the friction term νdx/dt , the system is dissipative and, as time goes

on, the oscillation amplitude x and the velocity ẋ of the oscillator decrease and

approach the asymptotic values x = 0, ẋ = 0. A trajectory in the phase space is

shown in Figure 1.2 where the orbit spirals to the origin for any initial condition.

In this case, the point (0, 0) is an attracting point of the dynamical system.

Another example of a dissipative system is the pendulum clock, where the energy

lost due to friction is reintegrated by a non-linear mechanism so that the oscillation

amplitude is stabilized, as in the system described by the Van der Pol equation:

d2x

dt2
+ (x2

− ν)
dx

dt
+ ω2x = 0 .

Figure 1.3 shows two typical trajectories of this kind of system: in both cases, the

orbit, with time, spirals (inwards or outwards) to approach the closed curve on

which it circulates in periodic motion in the t → ∞ limit. The closed curve is a

limit cycle.

As the above examples show, a very important property of dissipative systems is

the presence of attracting sets or attractors in the phase space. These are bounded

subsets of � to which regions of initial conditions of non-zero phase space volume
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1.2 Unpredictability: many degrees of freedom 7
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Figure 1.3 Example of a simple attractor: a stable limit cycle.

asymptote as time increases. From the property of volume preservation, it is easy

to see that conservative dynamical systems do not possess attractors.

The attractors of the two continuous time systems considered above have a

regular geometrical structure (a point, a closed curve) but this is not the case for

all dissipative systems. An example of a non-trivial geometrical structure is the

attractor of the two-dimensional Hénon map
{

x(t + 1) = 1 − ax2(t) + y(t)

y(t + 1) = bx(t).
(1.14)

Figure 1.4 shows the attractor of the Hénon map, for a = 1.4 and b = 0.3. The

blow-up of the boxed region in Figure 1.4 (see Figure 1.5) reveals a small-scale

pattern consisting of almost parallel lines. A further zoom in of a portion of Figure

1.5, shown in Figure 1.6, reveals that the part has the same structure as the whole.

On continuing this zooming in procedure we would find a similar structure on

arbitrarily small scales. This property of self-similarity qualifies the attractor as a

fractal; see, e.g., Ott (1993). When the motions on the attractor, as in the case of

the Hénon map, are also chaotic (see Section 1.3) the attractor is called a strange

attractor.

1.2 Unpredictability: systems with many degrees of freedom

After Newton’s foundation of the dynamical laws, the deterministic approach be-

came a powerful and successful method for the understanding of natural phenomena

especially in astronomy. As remarkable examples one can mention the derivation
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8 Basic concepts of dynamical systems theory
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Figure 1.4 The attractor of the Hénon map, obtained using Eq. (1.14) with a = 1.4
and b = 0.3.
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Figure 1.5 Enlargement of the boxed region in Figure 1.4.
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1.2 Unpredictability: many degrees of freedom 9
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Figure 1.6 Enlargement of the boxed region in Figure 1.5.

of Kepler’s laws from the Newtonian dynamical equations, and the gravitational

force. Another paradigmatic success of Newtonian mechanics was the discovery of

the planet Neptune, whose existence was predicted theoretically by Le Verrier and

Adams. Today, the positions of many celestial bodies and artificial satellites can be

calculated quickly with good accuracy by the powerful computers of astronomical

study centers.

Nevertheless, everyday life is characterized by a lot of phenomena which exhibit

unpredictable behaviors like the evolution of the weather or the fall of a leaf. How

do we reconcile the deterministic Laplacian assumption with the “irregularity” and

“unpredictability” of many natural phenomena? Laplace answered this question,

again in his book Essai Philosophique sur les Probabilités (Philosophical Essay

on Probability), by identifying the origin of the irregularity in our ignorance on the

system:

The curve described by a simple molecule of air or vapor is regulated in a manner

just as certain as the planetary orbits; the only difference between them is that which

comes from our ignorance. Probability is relative, in part to this ignorance, in part to our

knowledge.

Thus, according to the previous point of view, the observed irregularity is more

apparent than real: it is due to a large number of simple reasons, for example,

a large number of simple mechanical equations that rule the evolution of the

system. This interpretation is at the basis of Langevin’s approach to Brownian

motion.
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10 Basic concepts of dynamical systems theory

1.2.1 Brownian motion

In 1827 the Scottish botanist Robert Brown noticed that pollen grains suspended

in water jiggled about under the lens of the microscope, following a zig-zag path.

Initially, he believed that such activity was peculiar to the male sexual cells of

plants, but then he observed that pollen of plants dead for over a century showed

the same movement. Further study revealed that the same motion could be observed

not only with particles of other organic substances but even with chips of glass or

granite or particles of smoke.

In 1889 Gouy found that Brownian motion was more rapid for smaller parti-

cles, lower viscosity of the surrounding fluid and higher temperatures. These facts

suggest that the basic cause of Brownian motion lies in the “thermal molecular mo-

tion in the liquid environment.” Therefore it is natural (at least today!), following

the atomistic point of view, to suppose that a suspended particle is constantly and

randomly bombarded from all sides by the molecules of the liquid.

After important and independent works by Einstein (1905) and Smoluchowski

(1906), Langevin (1908) proposed an approach in terms of a stochastic differential

equation (to use modern terminology) for the particle movement, taking into account

the effect of the molecular hits by means of an average force, as given by the fluid

friction, and a random fluctuating term.

The basic physical assumptions in both Einstein’s and Langevin’s approaches

are

(a) Stokes’s law for the friction of a body moving in a liquid;

(b) equipartition of the kinetic energy among the various degrees of freedom of the system,

i.e. between the particles of the fluid and the grain performing Brownian motion.

A colloidal particle suspended in a liquid at temperature T is somehow assimilated

to a particle of the liquid, so that it possesses an average kinetic energy RT/(2NA),

in each spatial direction, where R is the perfect gas constant and NA is the Avogadro

number (the number of molecules in one mole); therefore one has:

1

2
m�v2

x� =
RT

2NA

. (1.15)

According to Stokes’s law, a spherical particle of radius a, moving in a liquid

with the speed vx in the x direction experiences a viscous resistance:

FStokes = −αvx = −6πηavx ,

where η is the viscosity. The above law holds if a is much larger than the average

distance between the liquid molecules, and Stokes’s force represents the average

macroscopic effect of the large number of irregular impacts of the molecules of the

fluid.
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