Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

1 Prologue

Contents

Python programming for biology
Choosing Python
Python’s history and versions
Bioinformatics
Computer platforms and installations

Python programming for biology

One of the main aims of this book is to empower the average researcher in the life sciences,
who may have a pertinent scientific question that can be readily answered by computational
techniques, but who doesn’t have much, if any, experience with programming. For many in
this position, the task of writing a program in a computer language is a bottleneck, if not an
impassable barrier. Often, the task is daunting and seems to require a significant investment
of time. The task is also subject to the barriers presented by a vocabulary filled with jargon and
a seemingly steep learning curve for those people who were not trained in computing or have
no inclination to become computer specialists. With this in mind for the novice programmer,
one ought to start with the language that is the easiest to get to grips with, and at the time of
writing we believe that that language is Python. This is not to say that we have made a
compromise by choosing a language that is easy to learn but which is not powerful or fully
featured. Python is certainly a very rich and capable way of programming, even for very large
projects; otherwise we authors wouldn’t be using it for our own scientific work.

A second main aim of this book is to use Python as a means to illustrate some of
what is going on within biological computing. We hope our explanations will show you
the scientific context of why something is done with computers, even if you are a newcomer
to biology or medical sciences. Even where a popular biological program is not written in
Python, or if you are a programmer who has good reason for using another language, we can
still use Python as a way of illustrating the major principles of programming for biology. We
feel that many of the most useful biological programs are based on combinations of simple
principles that almost anyone can understand. By trying to separate the core concepts from
the obfuscation and special cases, we aim to provide an overview of techniques and strategies
that you can use as a resource in your own research. Virtually all of the examples in this book
are working code that can be run and are based on real problems or programs within biological
computing. The examples can then be adapted, altered and combined to enable you to
program whatever you need.

We wish to make clear that this book intends to show you what sort of things can be
done and how to begin. It does not intend to offer a deep and detailed analysis of specific
biological and computational problems. This is not a typical scientific book, given that we
don’t always go for the most detailed or up-to-date examples. Given the choice, we aim to
give a broad-based understanding to newcomers and avoid what some may consider pedantry.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

2 Prologue

No doubt some people will think our approach somewhat too simplistic, but if you know
enough to know the difference then we don’t recommend looking to this book for those kinds
of answers. Likewise, there is only room for so many examples and we cannot cover all of the
scientific methods (including Python software libraries) that we would want to. Hopefully
though, we give the reader enough pointers to make a good start.

Choosing Python

It is perhaps important to include a short justification to say why we have written this book
for the Python programming language; after all, we can choose from several alternative
languages. Certainly Python is the language that we the authors write in on a daily basis,
but this familiarity was actually born out of a conscious decision to use Python for a large
biological programming project after having tried and considered a number of popular
alternatives. Aside from Python, the languages that we have commonly come across in
today’s biological community include: C, C++, FORTRAN, Java, Matlab, Perl, R and Ruby.
Specific comparison with some of these languages will be made at various points in the book,
but there are some characteristics of Python that we enjoy, which we feel would not be
available to the same level or in the same combination in any other language.

We like the clear and consistent layout that directs the programmer away from
obfuscated program code and towards an elegantly readable solution; this becomes especially
important when trying to work out what someone else’s program does, or even what your own
material does several years later. We like the way that Python has object orientation at its
heart, so you can use this powerful way to organise your data while still having the easy look
and feel of Python. This also means that by learning the language basics you automatically
become familiar with the very useful object-oriented approach. We like that Python generally
requires fewer lines of program code than other languages to do the equivalent job, and that it
often seems so much less tedious to write.

It is important to make it clear that we would not currently use Python for every
programming task in the life sciences. Python is not a perfect language. As it stands currently
for some specialised tasks, particularly those that require fast mathematical calculations which
are not supported by the numeric Python modules, we actively promote working with a
Python extension such as Cython, or some faster alternative language. However, we heartily
recommend that Python be used to administer the bookkeeping while the faster alternative
provides extra modules that act as a fast calculation engine. To this end, in Chapter 27 we will
show you how you can seamlessly mesh the Python language with Cython and also with the
compiled language C, to give all the benefits of Python and very fast calculations.

Python’s history and versions

The Python' programming language was the creation of Guido van Rossum. It is because of
his innovation and continuing support that Python is popular and continues to grow. The
Python programming community has afforded Guido the honour of the title ‘benevolent

! The name itself derives from Monty Python, which is why you’ll find the occasional honorary reference to ‘spam’,
‘dead parrot’ etc. when arbitrary examples are given.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

Python programming for biology 3

dictator for life’. What this means is that despite the fact that many aspects of Python are
developed by a large community, Guido has the ultimate say in what goes into Python.
Although not bound in any legality, everyone abides by Guido’s decisions, even if at times
some people are surprised by what he decides. We believe that this situation has largely
benefited Python by ensuring that the philosophy remains unsullied. Seemingly often, a
committee decision has the tendency to try to appease all views and can become tediously
slow with indecision; too timid to make any bold, yet improving moves. The Python
programming community has a large role in criticising Python and guiding its future devel-
opment, but when a decision needs to be made, it is one that everyone accepts. Certainly
there could be a big disagreement in the future, but so far the benevolent dictator’s decisions
have always taken the community with him.

There have been several, and in our opinion improving, versions of the Python
programming language. All versions before Python 3 share a very high degree of backward-
compatibility, so that code written for version 1.5 will still (mostly) work with say version
2.7 with few problems. Python 3 is not as compatible with older versions, but this seems a
reasonable price to be paid to keep things moving forward and eradicate some of the undesired
legacy that earlier versions have built up. Rest assured though, version 3 remains similar
enough in look and feel to the older Pythons, even if it is not exactly the same, and the
examples in this book work with both Python 2 and Python 3 except where specifically noted.
Also, included with the release of Python 3 is a conversion program ‘2to3’ which will attempt
to automatically change the relevant parts of a version 2 program so that it works with version
3. This will not be able to deal with every situation, but it will handle the vast majority and
save considerable effort.

For this book we will assume that you are using Python version 2.6 or 2.7 or 3. Some
bits, however, that use some newer features will not work with versions prior to 2.6 without
alteration. We feel that it is better to use the best available version, rather than write in a
deliberately archaic manner, which would detract from clarity.

Bioinformatics

The field of bioinformatics has emerged as we have discovered, through experimentation,
large amounts of DNA and protein sequence information. In its most conservative sense
bioinformatics is the discipline of extracting scientific information by the study of these
biological sequences, which, because of the large amount of data, must be analysed by
computer. Initially this encompassed what most biological computing was about, but we
contend that this was simply where biomolecular computing began and that it has far to go.
The informatics of biological systems these days includes the study of molecular structures,
including their dynamics and interactions, enzymatic activity, medical and pharmacological
statistics, metabolic profiles, system-wide modelling and the organisation of experimental
procedures, to name only a subset. It is within this wider context that this book is placed.

At present the programming language that is historically most famous for being used
with bioinformatics is probably Perl, which is notable for its ability to manipulate sequences,
particularly when stored as letters within formatted text. It also has a library of modules
available to perform many common bioinformatics tasks, collectively named BioPerl. In this
arena Python can do everything that Perl can. There is a Python equivalent of BioPerl,

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

4 Prologue

unsurprisingly named BioPython, and at this time the uptake of Python within the bioinfor-
matics community is growing, which is not surprising, given our belief that it is an easier but
more powerful language to work with. It is important to note that although some of the
BioPython modules will certainly be discussed in the course of this book (and we would
generally advise using tested, existing code wherever possible to make your programs easier
to write and understand) the explanations and examples will be more to do with understanding
what is going on underneath. We aim to avoid this book simply becoming a brochure for
existing programs where you don’t have to know the inner workings.

Computer platforms and installations

Python is available for every commonly used computer operating system including versions
of Microsoft Windows, Mac OS X, Linux and UNIX. With Windows you will generally have
to download and install Python, as it is not included as standard. On most new Mac OS X,
Linux and UNIX systems Python is included as standard (indeed some parts of Linux
operating systems are themselves written with Python), although you should check to see
which version of Python you have: typing ‘python’ at a command line reveals the version. For
a list of website locations where you can download Python for various platforms see the
reference section at the end of this book or the Cambridge University Press site: http:/www.
cambridge.org/pythonforbiology.

Precisely because Python is available for and can be run on many different computer
platforms, any programs you write will generally be able to be run on all computer systems.
However, there are a few important caveats you should be aware of. Although Python as a
language is interpreted in the same way on every computer system, when it comes to
interacting with the operating system (Windows, Mac OS X, Linux ...), things can work
differently on different computers. This is a problem that all cross-platform computing
languages face. You will probably come across this in your Python programs when dealing
with files and the directories that contain them. Although each operating system will have its
own nuances, once you are aware of the differences it is a relatively simple job to ensure that
your programs work just as well under any common operating system, and we will cover
details of this as required in the subsequent chapters.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

2 A beginners’ guide

Contents
Programming principles
Interpreting commands
Reusable functionality
Types of data
Python objects
Variables
Basic data types
Numbers
Text strings
Special objects
Data collections
Converting between types
Program flow
Operations
Control statements

Programming principles

The Python language can be viewed as a formalised system of understanding instructions
(represented by letters, numbers and other funny characters) and acting upon those directions.
Quite naturally, you have to put something in to get something out, and what you are going to
be passing to Python is a series of commands. Python is itself a computer program, which is
designed to interpret commands that are written in the Python language, and then act by
executing what these instructions direct. A programmer will sometimes refer to such com-
mands collectively as ‘code’.

Interpreting commands

So, to our first practical point; to get the Python interpreter to do something we will give
it some commands in the form of a specially created piece of text. It is possible to give
Python a series of commands one at a time, as we slowly type something into our computer.
However, while giving Python instructions line by line is useful if you want to test out
something small, like the examples in this chapter, for the most part this method of issuing
commands is impractical. What we usually do instead is create all of the lines of text
representing all the instructions, written as commands in the Python language, and store the
whole lot in a file. We can then activate the Python interpreter program so that it reads all of
the text from the file and acts on all of the commands issued within. A series of commands

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

6 A beginners’ guide

that we store together in such a way, and which do a specific job, can be considered as a
computer program.' If you would like to try any of the examples given in the book the next
chapter will tell you how to actually get started. The initial intention, however, is mostly to
give you a flavour of Python and introduce a few key principles.

mass = 5.9736
volume = 1.08321
density = mass/volume

print (density)

An example of a very simple, four-line Python program that performs a calculation and
displays the result.

Reusable functionality

When writing programs in the Python language, which the Python interpreter can then use, we
are not restricted to reading commands from only one file. It is a very common practice to
have a program distributed over a number of different files. This helps to organise writing of
the program, as you can put different specialised parts of your instructions into different files
that you can develop separately, without having to wade through large amounts of text. Also,
and perhaps most importantly, having Python commands in multiple files enables different
programs to share a set of commands. With shared files, the distinction between which
commands belong to one program and which belong to another is mostly meaningless. As
such, we typically refer to such a shared file as a module.

In Python you will use modules on a regular basis. And, as you might have already
guessed, the idea is to have modules containing a series of commands which perform a
function that would be useful for several programs, perhaps in quite different situations. For
example, you could write a module which contains the commands to do a statistical analysis
on some numeric data. This would be useful to any program that needs to run that kind of
analysis, as hopefully we have written the statistics module in such a way that the precise
amount and source of the numeric data that we send to the module is irrelevant. Whenever we
use a module we are avoiding having to write new Python commands, and are hopefully using
something that has been tried and tested and is known to work.

from Alignments import sequenceAlign
sequencel = 'GATTACAGC'
sequence2 = 'GTATTAAT'

print (sequenceAlign (sequencel, sequence2))

A Python example where general functionality, to align two sequences of letters, is
imported from a module called nlignments, which was defined elsewhere.

When working with Python there is already a long list of pre-made modules that you can
use. For example, there are modules to perform common mathematical operations, to interact with

! Not ‘programme’, even in the UK.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

Programming principles 7

the operating system and to search for patterns of symbols within text. These are all generally very
useful, and as such they are included as standard whenever you have Python installed. You will
still have to load, or import, these modules into a program to use them, but in essence you can
think of these modules as a convenient way of extending the vocabulary of the Python language
when you need to. By the same token, you don’t have to load any modules that are not going to be
useful, which might slow things down or use unnecessary computer memory.

Types of data

Before going on to give a more detailed tutorial we will first describe a little about the
construction and makeup of commands written in the Python language. Writing the command
code for a program involves thinking about items of data. There can be many different kinds
of data, from different origins, that we would wish to manipulate with a computer. Typically
we will represent the smallest units of this information as numbers or text. We can organise
such numbers and text into structured arrangements, for example, to create a list of data, and
we can then manipulate this entire larger container, with all of its underlying elements, as a
single unit. For example, given a list containing numbers you could extract the first number
from the list, or maybe get the list in reverse order.

numbers = [6, 0, 2, 2, 1, 4, 1, 5]

numbers.reverse ()
print (numbers)

Defining a list of numbers as a single entity and then reversing its order, before printing
the result to the screen.

In Python, as in many languages, there are some standard types of data-containing
structures that form the basis of most programs, and which are very easy to create and fill with
information. But you are not limited to these standard data structures; you can create your own
data organisation. For example, you could create a data structure called a person, which can
store the name, sex, height and age of real people. In a program, just as you could get the first
element of data stored in a list, so too could you extract the number that represents the age
of a person data structure. Going further, you could create many person data structures and
organise them further by placing them into lists. A data structure can appear inside the
organisation of many other data structures, so a single person could appear in several different
lists (for example, organised by age, sex or whatever) or a Person could contain references to
other person data structures to indicate the relationships between parents and children.

Python objects

This is where we can introduce the concept of an object. The person data structure described
above would commonly be referred to as a person object. Indeed, all of the organised data
structures in Python, including the simple inbuilt ones, are referred to as Python objects. So
numbers, text and lists are all kinds of objects. Not every programming language formalises
things in this way, but it will start to feel natural once you are used to Python, and means that the
form of the programming language is the same whatever type of object is being manipulated.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

8 A beginners’ guide

X =3

y=17

print (x +y)

print (x. add_ (y))

An example which shows the underlying object-oriented nature of numbers in Python: the last
two lines do the same thing. Although we would normally write additions in a conventional
way with a plus symbol, we are actually invoking the —add__ operation which all Python
numbers possess.

An important concept when dealing with objects is inheritance. That is to say that we
can make a new type of data structure by basing it on an existing one. Indeed, every object in
Python, except the simplest data structure of them all (the base object), inherits its organisa-
tion from another object. Accordingly, you could take a person object and use its specification
to create a scientist object. This would immediately give the scientist object the same
data organisation of a person object, with its age, sex and height data, but we can go on to
modify the scientist object to also store different information, like a list of publications or
current work institution. This can also be done for the built-in objects, so you could have your
own version of a Python list that is only allowed to contain odd numbers, if you really, really
wanted.

So far we have discussed the manipulation of data by a Python program in fairly
loose terms, so it is about time to more properly introduce you to a few of the concepts that
you will commonly use in Python programs. The examples that we give use operations and
types of data that are built into the language as standard, i.e. that the Python interpreter will
know how to handle without you having to add any special information.

Variables

As will already be apparent from the above Python snippets, when you refer to some data
in your program you will often be assigning it with a name, like ‘x’ or ‘sequencel’ or
‘dnaList’. Such names are commonly referred to as variables. They provide you with an
identifiable label that you can use to track an individual item of data amongst many others
within your program. The jargon term ‘variable’ is quite apt because you often want to
keep the same name label but vary the value of the data it refers to. For example, you can
write a program that calculates x+2 and x-2; where x can be set to any numeric value and
both operations are performed on that same named item, whatever it may be. This concept
is similar to algebra, where you can describe formulae, like y = x* + 3, without specifying
what x or y actually are, and then use the formula on different values of x in order to

compute y.

Note that in Python if you set the variable with the name ‘x’ to take a numeric value
you can still set it to be some other type of data later on in the program, so initially it may be a
number, but later be some text. Bearing this in mind, you must be careful that you only
perform operations on the ‘x’ data that are valid for that type of data. Staying with the idea of
data items having a particular data type, we next go through the basic types available in
Python.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

Basic data types 9

Basic data types
Numbers

There are two common types of numeric data in Python. These are infegers, the whole
numbers, and floating point numbers, numbers with decimal points.

Integers

Integers are whole numbers and can be positive, negative or zero in value. You would
typically use integers to count things that only come as a whole, like the size of a list or
number of people. You can naturally perform mathematical operations with integers, also in
combination with other types of number object, but in Python 2 if you perform some
mathematical operations with only integers the result is an integer too. While this makes
sense for addition and multiplication, division will give you the perhaps surprising result of a
whole number, rounding the answer (towards negative infinity to be precise). The advantage
of integer operations is that they are quick and always precise; non-integer representation
can give rise to small errors which can sometimes have serious consequences.

In Python 2 there are actually two types of integers, normal integers and long
integers, although you usually don’t have to pay much attention to this fact. The long integer
variety is used when the number is so big” that it must be stored in a different way, as it takes
up more memory slots to store the digits. Accordingly, you might see the 18-digit number
123,456,789,123,456,789 represented in Python (before version 3) as 123456789123456789L,
i.e. with an extra ‘1’ at the end giving a hint that it is the long variety. But otherwise you can
simply treat it as a number and do all the usual operations with it. In Python 3 this distinction
disappears and every integer is a long integer.

Floating point numbers

Floating point numbers, often simply referred to as floats, are numbers expressed in the
decimal system, i.e. 2.1, 999.998, 0.000004 or whatever. The value 2.0 would also be
interpreted as a floating point number, but the value 2, without the decimal point, will not;
it will be interpreted as an integer. Floating point numbers can also carry a suffix that states
which power of ten they operate at. So, for example, you can express four point six million as
4.6x10°, which in Python would be written as 4.6e6 (or as 46e5 or as 0.46e7) and similarly
one hundredth would be 1. 0e-2. A potential pitfall with floating point numbers is that they are
of limited precision. Of course you would not expect to be able to express some fractions like
5 exactly, but there can otherwise be some surprises when you do certain calculations. For
example, 0.1 plus 0.2 may sometimes give you something like 0.30000000000000004,
because of the way that the innards of computers work. The difference between this number
and the desired value of 0.3 is what would be referred to as a floating point error. Often there
is sufficient accuracy that a very small error doesn’t matter, but sometimes it does matter and
you should be aware of this issue. Common situations where the floating point errors could
matter include: when you are repeatedly updating a value and the error grows, when you are
interested in the small difference that results when subtracting two larger numbers and when

2 Typically the long integers start at 2! or 2°* depending on whether the system is 32 bit or 64 bit.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-89583-5 - Python Programming for Biology: Bioinformatics and Beyond
Tim J. Stevens and Wayne Boucher

Excerpt

More information

10 A beginners’ guide

two values ought to be equal but they aren’t exactly, e.g. after division you test for 1.0 but
don’t get the expected exact value.

Text strings

Strings are stretches of alphanumeric characters like "abc" or 'Hello world', in other
words they represent text. In Python strings are indicated inside of single or double quotation
marks, so that their text data can be distinguished from other data types and from the
commands of the program. Thus if in Python we issue the command print ("lumberjack")
we know that "lumberjack" is the string data and everything else is Python command.
Similarly, quotation marks will also distinguish between real numbers and text that happens
to be readable as a number. For example, 1.71 is a floating point number but "1.71 is a piece
of text containing four characters. You cannot do mathematics with the text string "1.71",
although it is possible to convert it to a number object with the value 1.71.

String objects might contain elements that cannot be represented by the printable
characters found on a keyboard, but which are nonetheless part of a piece of text. A good
example of this is the way that you can split text over several lines. When you type into your
computer you may use the Return key to do this. In a Python string you would use the special
sequence "\n" to do this:> Python uses a combination of characters to provide the special
meaning. For example, "Dead Parrot" naturally goes on one line, but "Dead\nParrot" goes
on two, as if you had pressed Return between the two words.

Another concept that deserves some explanation is the empty string, written simply
as v, with no visible characters between quotes. You can think of this in the same way as an
empty list; as a data structure that is capable of containing a sequence, but which happens to
contain nothing. The empty string is useful in situations where you must have a string object
present but don’t want to display any characters.

Text strings are made up of individual characters in a specific order, and in some ways
you can think of them as being like lists. Thus, for example, you can query what the first
character of a string is, or determine how long it is. In Python, however, you cannot modify
strings once they are defined; if you want to make a change you have to recreate them in their
entirety. This might seem stifling at first glance, but it rarely is in practice. The benefit of this
system is that you can use strings to access items in a Python dictionary (which is a handy way to
store data that we discuss below); if strings were internally alterable this would not be possible in
Python. Python can readily perform operations to replace an existing string with a modified
version. For example, if you wanted to convert some data that is initially stored as "pDead
parrot" into the text "Ex-parrot" you could redefine the data as the string "Ex-" joined onto
the last six characters of the original text. If at any point it really is painful to redefine a string
entirely, a common trick is to convert the text into a list of separate characters (see list data type
below) that you can manipulate internally, before converting the list of characters back into text.

Special objects

Booleans
The two Boolean objects are True and False, and they mean much what you might
expect. Many objects can be examined to test whether they are logically false, like an

3 To actually write the two characters "\n" without it being interpreted as a new line you would use "\\n".

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521895835
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521895835: 


