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C H A P T E R O N E

Introduction to Probabilities, Graphs, and 

Causal Models 

Chance gives rise to thoughts,

and chance removes them.

Pascal (1670)

1.1 INTRODUCTION TO PROBABILITY THEORY

1.1.1 Why Probabilities? 

Causality connotes lawlike necessity, whereas probabilities connote exceptionality, doubt,

and lack of regularity. Still, there are two compelling reasons for starting with, and in

fact stressing, probabilistic analysis of causality; one is fairly straightforward, the other

more subtle. 

The simple reason rests on the observation that causal utterances are often used in sit-

uations that are plagued with uncertainty. We say, for example, “reckless driving causes

accidents” or “you will fail the course because of your laziness” (Suppes 1970), knowing

quite well that the antecedents merely tend to make the consequences more likely, not

absolutely certain. Any theory of causality that aims at accommodating such utterances

must therefore be cast in a language that distinguishes various shades of likelihood –

namely, the language of probabilities. Connected with this observation, we note that

probability theory is currently the official mathematical language of most disciplines that

use causal modeling, including economics, epidemiology, sociology, and psychology. In

these disciplines, investigators are concerned not merely with the presence or absence

of causal connections but also with the relative strengths of those connections and with

ways of inferring those connections from noisy observations. Probability theory, aided

by methods of statistical analysis, provides both the principles and the means of coping

with – and drawing inferences from – such observations.

The more subtle reason concerns the fact that even the most assertive causal expres-

sions in natural language are subject to exceptions, and those exceptions may cause major

difficulties if processed by standard rules of deterministic logic. Consider, for example,

the two plausible premises:

1. My neighbor’s roof gets wet whenever mine does.

2. If I hose my roof it will get wet. 

Taken literally, these two premises imply the implausible conclusion that my neighbor’s

roof gets wet whenever I hose mine.
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Such paradoxical conclusions are normally attributed to the finite granularity of our

language, as manifested in the many exceptions that are implicit in premise 1. Indeed, the

paradox disappears once we take the trouble of explicating those exceptions and write,

for instance:

1*. My neighbor’s roof gets wet whenever mine does, except when it is covered

with plastic, or when my roof is hosed, etc. 

Probability theory, by virtue of being especially equipped to tolerate unexplicated ex-

ceptions, allows us to focus on the main issues of causality without having to cope with

paradoxes of this kind. 

As we shall see in subsequent chapters, tolerating exceptions solves only some of

the problems associated with causality. The remaining problems – including issues of

inference, interventions, identification, ramification, confounding, counterfactuals, and

explanation – will be the main topic of this book. By portraying those problems in the

language of probabilities, we emphasize their universality across languages. Chapter 7

will recast these problems in the language of deterministic logic and will introduce prob-

abilities merely as a way to express uncertainty about unobserved facts.

1.1.2 Basic Concepts in Probability Theory

The bulk of the discussion in this book will focus on systems with a finite number of dis-

crete variables and thus will require only rudimentary notation and elementary concepts

in probability theory. Extensions to continuous variables will be outlined but not elabo-

rated in full generality. Readers who want additional mathematical machinery are invited

to study the many excellent textbooks on the subject – for example, Feller (1950), Hoel

et al. (1971), or the appendix to Suppes (1970). This section provides a brief summary of

elementary probability concepts, based largely on Pearl (1988b), with special emphasis

on Bayesian inference and its connection to the psychology of human reasoning under

uncertainty. Such emphasis is generally missing from standard textbooks.

We will adhere to the Bayesian interpretation of probability, according to which prob-

abilities encode degrees of belief about events in the world and data are used to strengthen,

update, or weaken those degrees of belief. In this formalism, degrees of belief are as-

signed to propositions (sentences that take on true or false values) in some language, and

those degrees of belief are combined and manipulated according to the rules of prob-

ability calculus. We will make no distinction between sentential propositions and the

actual events represented by those propositions. For example, if A stands for the state-

ment “Ted Kennedy will seek the nomination for president in year 2012,” then P(A ƒ K)

stands for a person’s subjective belief in the event described by A given a body of knowl-

edge K, which might include that person’s assumptions about American politics, specific

proclamations made by Kennedy, and an assessment of Kennedy’s age and personality.

In defining probability expressions, we often simply write P(A), leaving out the symbol

K. However, when the background information undergoes changes, we need to identify

specifically the assumptions that account for our beliefs and explicitly articulate K (or

some of its elements). 

In the Bayesian formalism, belief measures obey the three basic axioms of probabil-

ity calculus:

2 Introduction to Probabilities, Graphs, and Causal Models
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(1.1)

P (sure proposition) �1, (1.2)

(1.3)

The third axiom states that the belief assigned to any set of events is the sum of the be-

liefs assigned to its nonintersecting components. Because any event A can be written as

the union of the joint events (A B) and (A ¬B), their associated probabilities are

given by1

(1.4)

where P(A, B) is short for More generally, if Bi, i � 1, 2,…, n, is a set

of exhaustive and mutually exclusive propositions (called a partition or a variable), then

P(A) can be computed from P(A, Bi), i � 1, 2,…, n, by using the sum

(1.5)

which has come to be known as the “law of total probability.” The operation of summing

up probabilities over all Bi is also called “marginalizing over B”; and the resulting prob-

ability, P(A), is called the marginal probability of A. For example, the probability of A,

“The outcomes of two dice are equal,” can be computed by summing over the joint

events i � 1, 2,…, 6, where Bi stands for the proposition “The outcome of 

the first die is i.” This yields

(1.6)

A direct consequence of (1.2) and (1.4) is that a proposition and its negation must be

assigned a total belief of unity,

(1.7)

because one of the two statements is certain to be true.

The basic expressions in the Bayesian formalism are statements about conditional

probabilities – for example, P(A ƒ B) – which specify the belief in A under the assump-

tion that B is known with absolute certainty. If P(A ƒ B) � P(A), we say that A and B

are independent, since our belief in A remains unchanged upon learning the truth of B.

If P(A ƒ B, C) � P(A ƒ C), we say that A and B are conditionally independent given

C; that is, once we know C, learning B would not change our belief in A.

Contrary to the traditional practice of defining conditional probabilities in terms of

joint events,

(1.8)P(A � B) �
P(A, B)

P(B)
,

P(A) � P(¬ A) � 1,

P(A) �a
i

P(A, Bi) � 6 �
1

36
�

1

6
.

(A ¿ Bi),

P(A) � a
i

P(A, Bi),

P(A ¿ B).

P(A) � P(A, B) � P(A, ¬ B),

¿¿

P(A or B) � P(A) � P(B) if A and B are mutually exclusive.

0 � P(A) � 1,

1.1 Introduction to Probability Theory 3
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Bayesian philosophers see the conditional relationship as more basic than that of joint

events – that is, more compatible with the organization of human knowledge. In this

view, B serves as a pointer to a context or frame of knowledge, and A ƒ B stands for an

event A in the context specified by B (e.g., a symptom A in the context of a disease B).

Consequently, empirical knowledge invariably will be encoded in conditional probabil-

ity statements, whereas belief in joint events (if it is ever needed) will be computed from

those statements via the product

(1.9)

which is equivalent to (1.8). For example, it was somewhat unnatural to assess

directly in (1.6). The mental process underlying such assessment presumes that the two

outcomes are independent, so to make this assumption explicit the probability of the joint

event (equality, Bi) should be assessed from the conditional event (equality ƒ Bi) via the

product

P(equality ƒ Bi) P(Bi) � P(outcome of second die is i ƒ Bi)P(Bi)

As in (1.5), the probability of any event A can be computed by conditioning it on any

set of exhaustive and mutually exclusive events Bi, i � 1, 2,…, n, and then summing:

(1.10)

This decomposition provides the basis for hypothetical or “assumption-based” rea-

soning. It states that the belief in any event A is a weighted sum over the beliefs in all the

distinct ways that A might be realized. For example, if we wish to calculate the probabil-

ity that the outcome X of the first die will be greater than the outcome Y of the second,

we can condition the event A : X � Y on all possible values of X and obtain

It is worth reemphasizing that formulas like (1.10) are always understood to apply in

some larger context K, which defines the assumptions taken as common knowledge (e.g.,

the fairness of dice rolling). Equation (1.10) is really a shorthand notation for the statement

�
1

6a
6

i�2

i � 1

6
�

5

12
.

� a
6

i�1

P(Y � i) 
1

6
� a

6

i�1
a
i�1

j�1
 P(Y � j) 

1

6

P(A) � a
6

i�1

P(Y � X � X � i)P(X � i)

P(A) � a
i

P(A � Bi)P(Bi).

�
1

6
�

1

6
�

1

36
.

P(A, Bi) �
1

36

P(A, B) � P(A � B) P(B),
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(1.11)

This equation follows from the fact that every conditional probability P(A ƒ K) is itself

a genuine probability function; hence it satisfies (1.10).

Another useful generalization of the product rule (equation (1.9)) is the chain rule for-

mula. It states that if we have a set of n events, E1, E2,…, En, then the probability of

the joint event (E1, E2,…, En) can be written as a product of n conditional probabilities:

(1.12)

This product can be derived by repeated application of (1.9) in any convenient order.

The heart of Bayesian inference lies in the celebrated inversion formula,

(1.13)

which states that the belief we accord a hypothesis H upon obtaining evidence e can be

computed by multiplying our previous belief P(H) by the likelihood P(e ƒ H) that e will

materialize if H is true. This P(H ƒ e) is sometimes called the posterior probability (or

simply posterior), and P(H) is called the prior probability (or prior). The denominator

P(e) of (1.13) hardly enters into consideration because it is merely a normalizing con-

stant which can be computed by requiring

that P(H ƒ e) and sum to unity.

Whereas formally (1.13) might be dismissed as a tautology stemming from the defi-

nition of conditional probabilities,

(1.14)

the Bayesian subjectivist regards (1.13) as a normative rule for updating beliefs in re-

sponse to evidence. In other words, although conditional probabilities can be viewed as

purely mathematical constructs (as in (1.14)), the Bayes adherent views them as primi-

tives of the language and as faithful translations of the English expression “…, given that

I know A.” Accordingly, (1.14) is not a definition but rather an empirically verifiable re-

lationship between English expressions. It asserts, among other things, that the belief a

person attributes to B after discovering A is never lower than that attributed to be-

fore discovering A. Also, the ratio between these two beliefs will increase proportionally

with the degree of surprise [P(A)]�1 one associates with the discovery of A.

The importance of (1.13) is that it expresses a quantity P(H ƒ e) – which people of-

ten find hard to assess – in terms of quantities that often can be drawn directly from our

experiential knowledge. For example, if a person at the next gambling table declares the

outcome “twelve,” and we wish to know whether he was rolling a pair of dice or spin-

ning a roulette wheel, our models of the gambling devices readily yield the quantities

P(twelve ƒ dice) and P(twelve ƒ roulette): 1/36 for the former and 1/38 for the latter.

Similarly, we can judge the prior probabilities P(dice) and P(roulette) by estimating the

number of roulette wheels and dice tables at the casino. Issuing a direct judgment of

A ¿ B

P(A � B) �
P(A, B)

P(B)
   and   P(B � A) �

P(A, B)

P(A)
,

P(¬ H � e)

P(e) � P(e � H)P(H) � P(e � ¬H)P(¬H),

P(H � e) �
P(e � H)P(H)

P(e)
,

P(E1, E2, p , En) � P(En  �  En�1, p , E2, E1) p  P(E2 � E1) P(E1).

P(A � K) �a
i

P(A � Bi, K)P(Bi  �  K).
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P(dice ƒ twelve) would have been much more difficult; only a specialist in such judg-

ments, trained at the very same casino, could do it reliably.

In order to complete this brief introduction, we must discuss the notion of proba-

bilistic model (also called probability space). A probabilistic model is an encoding of

information that permits us to compute the probability of every well-formed sentence S

in accordance with the axioms of (1.1)–(1.3). Starting with a set of atomic propositions

A, B, C,…, the set of well-formed sentences consists of all Boolean formulas involving

these propositions, for example, The traditional method of speci-

fying probabilistic models employs a joint distribution function, which is a function that

assigns nonnegative weights to every elementary event in the language (an elementary

event being a conjunction in which every atomic proposition or its negation appears once)

such that the sum of the weights adds up to 1. For example, if we have three atomic propo-

sitions, A, B, and C, then a joint distribution function should assign nonnegative weights

to all eight combinations – – such

that the eight weights sum to 1.

The reader may recognize the set of elementary events as the sample space in

probability textbooks. For example, if A, B, and C correspond to the propositions that

coins 1, 2, and 3 will come up heads, then the sample space will consist of the set

5HHH, HHT, HTH,…, TTT6. Indeed, it is sometimes convenient to view the conjunctive

formulas corresponding to elementary events as points (or worlds or configurations), and

to regard other formulas as sets made up of these points. Since every Boolean formula

can be expressed as a disjunction of elementary events, and since the elementary events

are mutually exclusive, we can always compute P(S) using the additivity axiom (equa-

tion (1.3)). Conditional probabilities can be computed the same way, using (1.14). Thus,

any joint probability function represents a complete probabilistic model.

Joint distribution functions are mathematical constructs of great importance. They

allow us to determine quickly whether we have sufficient information to specify a com-

plete probabilistic model, whether the information we have is consistent, and at what

point additional information is needed. The criteria are simply to check (i) whether the

information available is sufficient for uniquely determining the probability of every ele-

mentary event in the domain and (ii) whether the probabilities add up to 1.

In practice, however, joint distribution functions are rarely specified explicitly. In the

analysis of continuous random variables, the distribution functions are given by algebraic

expressions such as those describing normal or exponential distributions; for discrete vari-

ables, indirect representation methods have been developed where the overall distribution

is inferred from local relationships among small groups of variables. Graphical models,

the most popular of these representations, provide the basis of discussion throughout

this book. Their use and formal characterization will be discussed in the next few sec-

tions.

1.1.3 Combining Predictive and Diagnostic Supports

The essence of Bayes’s rule (equation 1.13)) is conveniently portrayed using the odds and

likelihood ratio parameters. Dividing (1.13) by the complementary form for 

we obtain

P(¬ H  �  e),

(A¿ B ¿ C), (A ¿ B C), p , (¬ A ¿ ¬ B ¿ ¬C)

S � (A ¿ B) ¡ ¬ C.

6 Introduction to Probabilities, Graphs, and Causal Models
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(1.15)

Defining the prior odds on H as

(1.16)

and the likelihood ratio as

(1.17)

the posterior odds

(1.18)

are given by the product

(1.19)

Thus, Bayes’s rule dictates that the overall strength of belief in a hypothesis H, based on

both our previous knowledge K and the observed evidence e, should be the product of

two factors: the prior odds O(H) and the likelihood ratio L(e ƒ H). The first factor mea-

sures the predictive or prospective support accorded to H by the background knowledge

alone, while the second represents the diagnostic or retrospective support given to H by

the evidence actually observed.2

Strictly speaking, the likelihood ratio L(e ƒ H) might depend on the content of the

tacit knowledge base K. However, the power of Bayesian techniques comes primarily

from the fact that, in causal reasoning, the relationship P(e ƒ H) is fairly local: given that

H is true, the probability of e can be estimated naturally since it is usually not dependent

on many other propositions in the knowledge base. For example, once we establish that

a patient suffers from a given disease H, it is natural to estimate the probability that she

will develop a certain symptom e. The organization of medical knowledge rests on the

paradigm that a symptom is a stable characteristic of the disease and should therefore be

fairly independent of other factors, such as epidemic conditions, previous diseases, and

faulty diagnostic equipment. For this reason the conditional probabilities P(e ƒ H), as

opposed to P(H ƒ e), are the atomic relationships in Bayesian analysis. The former pos-

sess modularity features similar to logical rules. They convey a degree of confidence in

rules such as “If H then e,” a confidence that persists regardless of what other rules or

facts reside in the knowledge base. 

Example 1.1.1 Imagine being awakened one night by the shrill sound of your bur-

glar alarm. What is your degree of belief that a burglary attempt has taken place? For

O(H � e) � L(e � H)O(H).

O(H � e) �
P(H � e)

P(¬H � e)

L(e � H) �
P(e � H)

P(e � ¬H)
,

O(H) �
P(H)

P(¬H)
�

P(H)

1 � P(H)

P(H � e)

P(¬H � e)
�

P(e � H)

P(e � ¬ H)
 

P(H)

P(¬ H)
.

1.1 Introduction to Probability Theory 7

2 In epidemiology, if H stands for exposure and e stands for disease, then the likelihood ratio L is
called the “risk ratio” (Rothman and Greenland 1998, p. 50). Equation (1.18) would then give the
odds that a person with disease e had been exposed to H.
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illustrative purposes we make the following judgments: (a) There is a 95% chance

that an attempted burglary will trigger the alarm system – P(alarm ƒ burglary) �

0.95; (b) based on previous false alarms, there is a slight (1%) chance that the alarm

will be triggered by a mechanism other than an attempted burglary – P (alarm ƒ

no burglary) � 0.01; (c) previous crime patterns indicate that there is a one in ten thou-

sand chance that a given house will be burglarized on a given night – P(burglary) �

10�4.

Putting these assumptions together using (1.19), we obtain

O(burglary ƒ alarm) � L (alarm ƒ burglary)O(burglary)

So, from

(1.20)

we have

Thus, the retrospective support imparted to the burglary hypothesis by the alarm

evidence has increased its degree of belief almost a hundredfold, from one in ten thou-

sand to 94.1 in ten thousand. The fact that the belief in burglary is still below 1%

should not be surprising, given that the system produces a false alarm almost once

every three months. Notice that it was not necessary to estimate the absolute values

of the probabilities P(alarm ƒ burglary) and P(alarm ƒ no burglary). Only their ratio

enters the calculation, so a direct estimate of this ratio could have been used instead.

1.1.4 Random Variables and Expectations 

By a variable we will mean an attribute, measurement or inquiry that may take on one of

several possible outcomes, or values, from a specified domain. If we have beliefs (i.e.,

probabilities) attached to the possible values that a variable may attain, we will call that

variable a random variable.3 For example, the color of the shoes that I will wear tomor-

row is a random variable named “color,” and the values it may take come from the domain

5yellow, green, red,…6.

Most of our analysis will concern a finite set V of random variables (also called par-

titions) where each variable X � V may take on values from a finite domain DX. We

will use capital letters (e.g., X, Y, Z) for variable names and lowercase letters (x, y, z)

P(burglary � alarm) �
0.0095

1 � 0.0095
� 0.00941.

P(A) �
O(A)

1 � O(A)

�
0.95

0.01
 

10�4

1 � 10�4
� 0.0095.

8 Introduction to Probabilities, Graphs, and Causal Models

3 This is a minor generalization of the textbook definition, according to which a random variable is
a mapping from the sample space (e.g., the set of elementary events) to the real line. In our defi-
nition, the mapping is from the sample space to any set of objects called “values,” which may or
may not be ordered.
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as generic symbols for specific values taken by the corresponding variables. For exam-

ple, if X stands for the color of an object, then x will designate any possible choice of an

element from the set 5yellow, green, red,…6. Clearly, the proposition X � yellow de-

scribes an event, namely, a subset of possible states of affair that satisfy the proposition

“the color of the object is yellow.” Likewise, each variable X can be viewed as a parti-

tion of the states of the world, since the statement X � x defines a set of exhaustive and

mutually exclusive sets of states, one for each value of x.

In most of our discussions, we will not make notational distinction between variables

and sets of variables, because a set of variables essentially defines a compound variable

whose domain is the Cartesian product of the domains of the individual constituents in

the set. Thus, if Z stands for the set 5X, Y6, then z stands for pairs (x, y) such that x �

DX and y � DY. When the distinction between variables and sets of variables requires

special emphasis, indexed letters (say, X1, X2,…, Xn or V1, V2,…, Vn) will be used to

represent individual variables. 

We shall consistently use the abbreviation P(x) for the probabilities x �

Dx . Likewise, if Z stands for the set 5X, Y6, then P(z) will be defined as

When the values of a random variable X are real numbers, X is called a real random

variable; one can then define the mean or expected value of X as

(1.21)

and the conditional mean of X, given event Y � y, as

(1.22)

The expectation of any function g of X is defined as

(1.23)

In particular, the function g(X) � (X – E(X))2 has received much attention; its expec-

tation is called the variance of X, denoted 

The conditional mean E(X ƒ Y � y) is the best estimate of X, given the observation

Y � y, in the sense of minimizing the expected square error over

all possible 

The expectation of a function g(X, Y) of two variables, X and Y, requires the joint

probability P(x, y) and is defined as 

E[g(X, Y)] � a
x, y

g(x, y)P(x, y)

x	. 

gx(x � x	)2P(x � y)

s
2
X � E[(X � E(X))2].

s
2
X;

E[g(X)] � a
x

g(x)P(x).

E(X � y) �a
x

xP(x � y).

E(X) �a
x

xP(x)

P(z) � P(Z � z) � P(X � x, Y � y),   x � DX,   y � DY.

P(X � x),

1.1 Introduction to Probability Theory 9
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(cf. equation (1.23)). Of special importance is the expectation of the product g(X, Y) �

(X � E(X))(Y � E(Y)), which is known as the covariance of X and Y,

and which is often normalized to yield the correlation coefficient

and the regression coefficient (of X on Y )

The conditional variance, covariance, and correlation coefficient, given Z � z, are

defined in a similar manner, using the conditional distribution P(x, y ƒ z) in taking expec-

tations. In particular, the conditional correlation coefficient, given Z � z, is defined as

(1.24)

Additional properties, specific to normal distributions, will be reviewed in Chapter 5

(Section 5.2.1).

The foregoing definitions apply to discrete random variables – that is, variables that

take on finite or denumerable sets of values on the real line. The treatment of expectation

and correlation is more often applied to continuous random variables, which are charac-

terized by a density function f(x) defined as follows:

for any two real numbers a and b with a � b. If X is discrete, then f (x) coincides with

the probability function P(x), once we interpret the integral through the translation

(1.25)

Readers accustomed to continuous analysis should bear this translation in mind when-

ever summation is used in this book. For example, the expected value of a continuous

random variable X can be obtained from (1.21), to read

with analogous translations for the variance, correlation, and so forth.

We now turn to define conditional independence relationships among variables, a

central notion in causal modelling.

E(X) �1
�

��
xf (x) dx,

1
�

��
f (x)dx 3 a

x

P(x).

P(a � X � b) � 1
b

a
f(x) dx

rXY �z �

sXY �z

sX �z sY �z
.

rXY � rXY 

sX

sY
�

sXY

s
2
Y

.

rXY �

sXY

sXsY

sXY � E [(X � E(X))(Y � E(Y))],

10 Introduction to Probabilities, Graphs, and Causal Models
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