
Modeling in Event-B

A practical text suitable for an introductory or advanced course in formal methods,
this book presents a mathematical approach to modeling and designing systems using
an extension of the B formalism: Event-B.

Based on the idea of refinement, the author’s systematic approach allows the user to
construct models gradually and to facilitate a systematic reasoning method by means
of proofs. Readers will learn how to build models of programs and, more generally,
discrete systems, but this is all done with practice in mind. The numerous examples
provided arise from various sources of computer system developments, including se-
quential programs, concurrent programs, and electronic circuits.

The book also contains a large number of exercises and projects ranging in difficulty.
Each of the examples included in the book has been proved using the Rodin Platform
tool set, which is available free for download at www.event-b.org.

Jean-Raymond Abrial was a guest professor and researcher in the Department
of Computer Science at ETH Zurich.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Modeling in Event-B
System and Software Engineering

Jean-Raymond Abrial

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521895569

c© J.-R. Abrial 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Abrial, Jean-Raymond.

Modeling in event-b : system and software engineering / Jean-Raymond Abrial.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-521-89556-9 (hardback)

1. Formal methods (Computer science) 2. Computer science – Mathematical models.
3. Computer systems – Verification. I. Title.

QA76.9.F67A27 2010
004.01′51 – dc22 2010001382

ISBN 978-0-521-89556-9 Hardback

Additional resources for this publication at www.event-b.org

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Contents

Prologue: Faultless systems – yes we can! page xi
Acknowledgments xxv

1 Introduction 1
1.1 Motivation 1
1.2 Overview of the chapters 2
1.3 How to use this book 8
1.4 Formal methods 10
1.5 A little detour: blueprints 12
1.6 The requirements document 13
1.7 Definition of the term “formal method” as used in this book 16
1.8 Informal overview of discrete models 18
1.9 References 22

2 Controlling cars on a bridge 24
2.1 Introduction 24
2.2 Requirements document 25
2.3 Refinement strategy 27
2.4 Initial model: limiting the number of cars 27
2.5 First refinement: introducing the one-way bridge 50
2.6 Second refinement: introducing the traffic lights 70
2.7 Third refinement: introducing car sensors 88

3 A mechanical press controller 100
3.1 Informal description 100
3.2 Design patterns 103
3.3 Requirements of the mechanical press 114
3.4 Refinement strategy 116
3.5 Initial model: connecting the controller to the motor 117
3.6 First refinement: connecting the motor buttons to the controller 119

v

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


vi Contents

3.7 Second refinement: connecting the controller to the clutch 127
3.8 Another design pattern: weak synchronization of two strong reactions 127
3.9 Third refinement: constraining the clutch and the motor 135
3.10 Fourth refinement: connecting the controller to the door 137
3.11 Fifth refinement: constraining the clutch and the door 138
3.12 Another design pattern: strong synchronization of two strong reactions 139
3.13 Sixth refinement: more constraints between clutch and door 146
3.14 Seventh refinement: connecting the controller to the clutch buttons 147

4 A simple file transfer protocol 149
4.1 Requirements 149
4.2 Refinement strategy 150
4.3 Protocol initial model 151
4.4 Protocol first refinement 158
4.5 Protocol second refinement 167
4.6 Protocol third refinement 169
4.7 Development revisited 172
4.8 Reference 175

5 The Event-B modeling notation and proof obligation rules 176
5.1 The Event-B notation 176
5.2 Proof obligation rules 188

6 Bounded re-transmission protocol 204
6.1 Informal presentation of the bounded re-transmission protocol 204
6.2 Requirements document 210
6.3 Refinement strategy 211
6.4 Initial model 212
6.5 First and second refinements 213
6.6 Third refinement 215
6.7 Fourth refinement 216
6.8 Fifth refinement 221
6.9 Sixth refinement 225
6.10 Reference 226

7 Development of a concurrent program 227
7.1 Comparing distributed and concurrent programs 227
7.2 The proposed example 228
7.3 Interleaving 233
7.4 Specifying the concurrent program 237
7.5 Refinement strategy 242
7.6 First refinement 245
7.7 Second refinement 250

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Contents vii

7.8 Third refinement 253
7.9 Fourth refinement 255
7.10 Reference 257

8 Development of electronic circuits 258
8.1 Introduction 258
8.2 A first example 267
8.3 Second example: the arbiter 280
8.4 Third example: a special road traffic light 291
8.5 The Light circuit 299
8.6 Reference 305

9 Mathematical language 306
9.1 Sequent calculus 306
9.2 The propositional language 310
9.3 The predicate language 316
9.4 Introducing equality 319
9.5 The set-theoretic language 321
9.6 Boolean and arithmetic language 331
9.7 Advanced data structures 334

10 Leader election on a ring-shaped network 353
10.1 Requirement document 353
10.2 Initial model 355
10.3 Discussion 356
10.4 First refinement 359
10.5 Proofs 361
10.6 Reference 366

11 Synchronizing a tree-shaped network 367
11.1 Introduction 367
11.2 Initial model 369
11.3 First refinement 371
11.4 Second refinement 375
11.5 Third refinement 377
11.6 Fourth refinements 384
11.7 References 386

12 Routing algorithm for a mobile agent 387
12.1 Informal description of the problem 387
12.2 Initial model 392
12.3 First refinement 396
12.4 Second refinement 399

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


viii Contents

12.5 Third refinement: data refinement 403
12.6 Fourth refinement 405
12.7 References 405

13 Leader election on a connected graph network 406
13.1 Initial model 407
13.2 First refinement 407
13.3 Second refinement 410
13.4 Third refinement: the problem of contention 412
13.5 Fourth refinement: simplification 414
13.6 Fifth refinement: introducing cardinality 415

14 Mathematical models for proof obligations 417
14.1 Introduction 417
14.2 Proof obligation rules for invariant preservation 418
14.3 Observing the evolution of discrete transition systems: traces 420
14.4 Presentation of simple refinement by means of traces 424
14.5 General refinement set-theoretic representation 431
14.6 Breaking the one-to-one relationship between abstract and concrete

events 441

15 Development of sequential programs 446
15.1 A systematic approach to sequential program development 446
15.2 A very simple example 450
15.3 Merging rules 453
15.4 Example: binary search in a sorted array 454
15.5 Example: minimum of an array of natural numbers 458
15.6 Example: array partitioning 460
15.7 Example: simple sorting 463
15.8 Example: array reversing 466
15.9 Example: reversing a linked list 469
15.10 Example: simple numerical program computing the square root 473
15.11 Example: the inverse of an injective numerical function 476

16 A location access controller 481
16.1 Requirement document 481
16.2 Discussion 484
16.3 Initial model of the system 486
16.4 First refinement 488
16.5 Second refinement 492
16.6 Third refinement 497
16.7 Fourth refinement 501

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Contents ix

17 Train system 508
17.1 Informal introduction 508
17.2 Refinement strategy 527
17.3 Initial model 528
17.4 First refinement 536
17.5 Second refinement 543
17.6 Third refinement 544
17.7 Fourth refinement 546
17.8 Conclusion 548
17.9 References 549

18 Problems 550
18.1 Exercises 551
18.2 Projects 557
18.3 Mathematical developments 572
18.4 References 582

Index 584

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can!

This title is certainly provocative. We all know that this claim corresponds to something
that is impossible. No! We cannot construct faultless systems; just have a look around.
If it were possible, it would have been already done a long time ago. And anyway, to
begin with, what is a “fault”?

So, how can we imagine the contrary? We might think: yet another guru trying
to sell us his latest universal panacea. Dear reader, be reassured, this Prologue does
not contain any new bright solutions and, moreover, it is not technical; you’ll have no
complicated concepts to swallow. The intention is just to remind you of a few simple
facts and ideas that you might use if you wish to do so.

The idea is to play the role of someone who is faced with a terrible situation (yes,
the situation of computerized system development is not far from being terrible – as
a measure, just consider the money thrown out of the window when systems fail).
Faced with a terrible situation, we might decide to change things in a brutal way; it
never works. Another approach is to gradually introduce some simple features that
together will eventually result in a global improvement of the situation. The latter is
the philosophy we will use here.

Definitions and requirements document
Since it is our intention to build correct systems, we need first to carefully define the
way we can judge what it is we are doing. This is the purpose of a “definitions and
requirements” document, which has to be carefully written before embarking on any
computerized system development.

But, you say, lots of industries have such documents; they already exist, so why
bother? Well, it is my experience that most of the time, requirements documents that
are used in industry are very poor ; it is often very hard just to understand what the

Jean-Raymond Abrial. Faultless Systems: Yes We Can! Computer, 42(9): 30–36, September 2009,
doi:10.1109/MC.2009.283. c©IEEE 2009. Reproduced with permission.

xi

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xii Prologue: Faultless systems – yes we can!

requirements are and thus to extract them from these documents. People too often
justify the appropriateness of their requirements document by the fact that they use
some (expensive) tools!

I strongly recommend that a requirements document is rewritten along the simple
lines presented in this section.

Such a document should be made up of two kinds of texts embedded in each other:
the explanatory text and the reference text. The former contains explanations needed
to understand the problem at hand. Such explanations are supposed to help a reader
who encounters a problem for the first time and who needs some elementary account.
The latter contains definitions and requirements mainly in the form of short natural
language statements that are labeled and numbered. Such definitions and requirements
are more formal than the accompanying explanations. However, they must be self-
contained and thus constitute a unique reference for correctness.

The definitions and requirements document bears an analogy with a book of mathe-
matics where fragments of the explanatory text (where the author explains informally
his approach and sometimes gives some historical background) are intermixed with
fragments of more formal items – definitions, lemmas, and theorems – all of which
form the reference text and can easily be separated from the rest of the book.

In the case of system engineering, we label our reference definitions and requirements
along two axes. The first one contains the purpose (functions, equipment, safety, phys-
ical units, degraded modes, errors . . . ) while the second one contains the abstraction
level (high, intermediate, low . . . ).

The first axis must be defined carefully before embarking on the writing of the
definitions and requirements document since it might be different from one project to
the next. Note that the “functional” label corresponds to requirements dealing with
the specific task of the intended software, whereas the “equipment” label deals with
assumptions (which we also call requirements) that have to be guaranteed concerning
the environment situated around our intended software. Such an environment is made of
some pieces of equipment, some physical varying phenomena, other pieces of software,
as well as system users. The second axis places the reference items within a hierarchy,
going from very general (abstract) definitions or requirements down to more and more
specific ones imposed by system promoters.

It is very important that this stage of the definitions and requirements document be
agreed upon and signed by the stakeholders.

At the end of this phase however, we have no guarantee that the desired properties
of our system we have written down can indeed be fulfilled. It is not by writing that an
intended airplane must fly that it indeed will. However, quite often after the writing
of such a document, people rush into the programming phase and we know very well
what the outcome is. What is needed is an intermediate phase to be undertaken before
programming; this is the purpose of what is explained in the next section.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can! xiii

Modeling vs. programming
Programming is the activity of constructing a piece of formal text that is supposed to
instruct a computer how to fulfil certain tasks. Our intention is not to do that. What
we intend to build is a system within which there is a certain piece of software (the
one we shall construct), which is a component among many others. This is the reason
why our task is not limited to the software part only.

In doing this as engineers, we are not supposed to instruct a computer; rather, we are
supposed to instruct ourselves. To do this in a rigorous way, we have no choice but to
build a complete model of our future system, including the software that will eventually
be constructed, as well as its environment, which, again, is made of equipment, varying
physical phenomena, other software, and even users. Programming languages are of no
help in doing this. All this has to be carefully modeled so that the exact assumptions
within which our software is going to behave are known.

Modeling is the main task of system engineers. Programming then becomes a sub-
task which might very well be performed automatically.

Computerized system modeling has been done in the past (and still is) with the help
of simulation languages such as SIMULA-67 (the ancestor of object-oriented program-
ming languages). What we propose here is also to perform a simulation, but rather
than doing it with the help of a simulation language, the outcome of which can be in-
spected and analyzed, we propose to do it by constructing mathematical models which
will be analyzed by doing proofs. Physicists or operational researchers proceed in this
way. We will do the same.

Since we are not instructing a computer, we do not have to say what is to be done,
we have rather to explain and formalize what we can observe. But immediately comes
the question: how can we observe something that does not yet exist? The answer to
this question is simple: it certainly does not exist yet in the physical world, but, for
sure, it exists in our minds. Engineers or architects always proceed in this way: they
construct artefacts according to the pre-defined representation they have of them in
their minds.

Discrete transition systems and proofs
As said in the previous section, modeling is not just formalizing our mental represen-
tation of the future system, it also consists in proving that this representation fulfils
certain desired properties, namely those stated informally in the definitions and re-
quirements document briefly described above.

In order to perform this joint task of simulation and proofs, we use a simple formal-
ism, that of discrete transition systems. In other words, whatever the modeling task we
have to perform, we always represent the components of our future systems by means
of a succession of states intermixed with sudden transitions, also called events.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xiv Prologue: Faultless systems – yes we can!

From the point of view of modeling, it is important to understand that there are no
fundamental differences between a human being pressing a button, a motor starting
or stopping, or a piece of software executing certain tasks – all of them being situated
within the same global system. Each of these activities is a discrete transition system,
working on its own and communicating with others. They are together embarked on
the distributed activities of the system as a whole. This is the way we would like to do
our modeling task.

It happens that this very simple paradigm is extremely convenient. In particular,
the proving task is partially performed by demonstrating that the transitions of each
component preserve a number of desired global properties which must be permanently
obeyed by the states of our components. These properties are the so-called invariants.
Most of the time, these invariants are transversal properties involving the states of
multiple components in our system. The corresponding proofs are called the invariant
preservation proofs.

States and events
As seen in previous section, a discrete transition component is made of a state and
some transitions. Let us describe this here in simple terms.

Roughly speaking, a state is defined (as in an imperative program) by means of
a number of variables. However, the difference with a program is that these variables
might be any integer, pairs, sets, relations, functions, etc. (i.e. any mathematical object
representable within set theory), not just computer objects (i.e. limited integer and
floating point numbers, arrays, files, and the like). Besides the variables’ definitions,
we might have invariant statements, which can be any predicate expressed within the
notation of first-order logic and set theory. By putting all this together, a state can be
simply abstracted to a set.

Exercises: What is the state of the discrete system of a human being able to press a
button? What is the state of the discrete system of a motor being able to start and stop?

Taking this into account, an event can be abstracted to a simple binary relation
built on the state set. This relation represents the connection existing between two
successive states considered just before and just after the event “execution.” However,
defining an event directly as a binary relation would not be very convenient. A better
notation consists in splitting an event into two parts: the guards and the actions.

A guard is a predicate and all the guards conjoined together in an event form the
domain of the corresponding relation. An action is a simple assignment to a state
variable. The actions of an event are supposed to be “executed” simultaneously on
different variables. Variables that are not assigned are unchanged.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can! xv

This is all the notation we are using for defining our transition systems.

Exercises: What are the events of the discrete system of a human being able to
press a button? What are the events of the discrete system of a motor being able
to start and stop? What is the possible relationship between both these systems?

At this stage, we might be slightly embarrassed and discover that it is not so easy
to answer the last question. In fact, to begin with, we have not followed our own
prescriptions! Perhaps it would have been better to first write down a definitions and
requirements document concerned with the user/button/motor system. In doing this,
we might have discovered that this relationship between the motor and the button is
not that simple after all. Here are some questions that might come up: do we need a
single button or several of them (i.e. a start button and a stop button)? Is the latter
a good idea? In the case of several buttons, what can we observe if the start button is
pressed while the motor is already started? In this case, do we have to release the button
to re-start the motor later? And so on. We could also have figured out that, rather
than considering separately a button system and a motor system and then composing
them, it might have been better to consider first a single problem which might later
be decomposed into several. Now, how about putting a piece of software between the
two? And so on.

Horizontal refinement and proofs
The modeling of a large system containing many discrete transition components is
not a task that can be done in one shot. It has to be done in successive steps. Each
of these steps make the model richer by first creating and then enriching the states
and transitions of its various components, first in a very abstract way and later by
introducing more concrete elements. This activity is called horizontal refinement (or
superposition).

In doing this, the system engineer explores the definitions and requirements docu-
ment and gradually extracts from it some elements to be formalized; he thus starts
the traceability of the definitions and requirements within the model. Notice that quite
often it is discovered by modeling that the definitions and requirements document is
incomplete or inconsistent; it then has to be edited accordingly.

By applying this horizontal refinement approach, we have to perform some proofs,
namely that a more concrete refinement step does not invalidate what has been done
in a more abstract step: these are the refinement proofs.

Note, finally, that the horizontal refinement steps are complete when there do not
remain any definitions or any requirements that have not been taken into account in
the model.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xvi Prologue: Faultless systems – yes we can!

In making an horizontal refinement, we do not care about implementability. Our
mathematical model is done using the set-theoretic notation to write down the state
invariants and the transitions.

When making an horizontal refinement, we extend the state of a model by adding
new variables. We can strengthen the guards of an event or add new guards. We also
add new actions in an event. Finally, it is possible to add new events.

Vertical refinement and proofs
There exists a second kind of refinement that takes place when all horizontal refinement
steps have been performed. As a result, we do not enter any more new details of the
problem in the model, we rather transform some state and transitions of our discrete
system so that it can easily be implemented on a computer. This is called vertical
refinement (or data refinement). It can often be performed by a semi-automatic tool.
Refinement proofs have also to be performed in order to be sure that our implementa-
tion choice is coherent with the more abstract view.

A typical example of vertical refinement is the transformation of finite sets into
boolean arrays together with the corresponding transformations of set-theoretic oper-
ations (union, intersection, inclusion, etc.) into program loops.

When making a vertical refinement, we can remove some variables and add new ones.
An important aspect of vertical refinement is the so-called gluing invariant linking the
concrete and abstract states.

Communication and proofs
A very important aspect of the modeling task is concerned with the communication
between the various components of the future system. We have to be very careful here
to proceed by successive refinements. It is a mistake to model immediately the com-
munication between components as they will be in the final system. A good approach
to this is to consider that each component has the “right” to access directly the state of
other components (which are still very abstract too). In doing that we “cheat”, as it is
clearly not the way it works in reality. But it is a very convenient way to approach the
initial horizontal refinement steps as our components are gradually refined with their
communication becoming gradually richer as one moves along the refinement steps. It
is only at the end of the horizontal refinement steps that it is appropriate to introduce
various channels corresponding to the real communication schemes at work between
components and to possibly decompose our global system into several communicating
sub-systems.

We can then figure out that each component reacts to the transitions of others with
a fuzzy picture of their states. This is because the messages between the components

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can! xvii

do take some time to travel. We then have to prove that, in spite of this time shift,
things remain “as if” such a shift did not exist. This is yet another refinement proof
that we have to perform.

Being faultless: what does it mean?
We are now ready to make precise what we mean by a “faultless” system, which repre-
sents our ultimate goal as the title of this prologue indicates.

If a program controlling a train network is not developed to be correct by con-
struction, then, after writing it, we can certainly never prove that this program will
guarantee that two trains will never collide. It is too late. The only thing we might
sometimes (not always unfortunately) be able to test or prove is that such a program
has not got array accesses that are out of bounds, or dangerous null pointers that
might be accessed, or that it does not contain the risk of some arithmetic overflow
(although, remember, this was precisely the undetected problem that caused the Ari-
ane 5 crash on its maiden voyage).

There is an important difference between a solution validation versus a problem
validation. It seems that there is considerable confusion here as people do not make
any clear distinction between the two.

A solution validation is concerned solely with the constructed software and it val-
idates this piece of code against a number of software properties as mentioned above
(out-of-bound array access, null pointers, overflows). On the contrary, a problem val-
idation is concerned with the overall purpose of our system (i.e. to ensure that trains
travel safely within a given network). To do this, we have to prove that all components
of the system (not only the software) harmoniously participate in the global goal.

To prove that our program will guarantee that two trains will never collide, we have
to construct the program by modeling the problem. And, of course, a significant part
of this is that the property in question must be part of the model to begin with.

We should notice, however, that people sometimes succeed in doing some sort of
problem proofs directly as part of the solution (the program). This is done by incor-
porating some so-called ghost variables dealing with the problem inside the program.
Such variables are then removed from the final code. We consider that this approach
is a rather artificial afterthought. The disadvantage of this approach is that it focuses
attention on the software rather than on the wider problem. In fact, this use of ghost
variables just highlights the need for abstraction when reasoning at the problem level.
The approach advocated here is precisely to start with the abstractions, reason about
these, and introduce the programs later.

During the horizontal refinement phase of our model development, we shall take
account of many properties. At the end of the horizontal refinement phase, we shall
then know exactly what we mean by this non-collision property. In doing so, we shall

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xviii Prologue: Faultless systems – yes we can!

make precise all assumptions (in particular, environment assumptions) by which our
model will guarantee that two trains will never collide.

As can be seen, the property alone is not sufficient. By exhibiting all these assump-
tions, we are doing a problem validation that is completely different in nature from the
one we can perform on the software only.

Using this kind of approach for all properties of our system will allow us to claim
that, at the end of our development, our system is faultless by construction. For this, we
have made very precise what we call the “faults” under consideration (and, in particular,
their relevant assumptions).

However, we should note a delicate point here. We pretended that this approach
allows us to produce the final software that is correct by construction relative to its
surrounding environment. In other words, the global system is faultless. This has been
done by means of proofs performed during the modeling phase where we constructed
a model of the environment. Now we said earlier that this environment was made
up of equipment, physical phenomena, pieces of software, and also users. It is quite
clear that these elements cannot be formalized completely. Rather than say that our
software is correct relative to its environment, it would be more appropriate to be more
modest by saying that our software is correct relative to the model of the environment
we have constructed. This model is certainly only an approximation of the physical
environment. Should this approximation be too far from the real environment, then it
would be possible that our software would fail under unforeseen external circumstances.

In conclusion, we can only pretend that we have a relative faultless construction, not
an absolute one, which is clearly impossible. A problem where the solution is still in its
infancy is that of finding the right methodology to perform an environment modeling
that is a “good” approximation of the real environment. It is clear that a probabilistic
approach would certainly be very useful when doing this.

About proofs
In previous sections, we mentioned several times that we have to perform proofs during
the modeling process. First of all, it must be clear that we need a tool for generating
automatically what we have to prove. It would be foolish (and error prone) to let a
human being write down explicitly the formal statements that must be proved, for the
simple reason that it is common to have thousands of such proofs. Second, we also
need a tool to perform the proofs automatically: a typical desirable figure here is to
have 90% of the proofs being discharged automatically.

An interesting question is then to study what happens when an automatic proof
fails. It might be because: (1) the automatic prover is not smart enough, or (2) the
statement to prove is false, or else (3) the statement to prove cannot be proved. In case
(1), we have to perform an interactive proof (see the “Tool” section below). In case (2),

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can! xix

the model has to be significantly modified. In case (3), the model has to be enriched.
Cases (2) and (3) are very interesting; they show that the proof activity plays the same
role for models as the one played by testing for programs.

Also notice that the final percentage of automatic proofs is a good indication of the
quality of the model. If there are too many interactive proofs, it might signify that
the model is too complicated. By simplifying the model, we often also significantly
augment the percentage of automatically discharged proofs.

Design pattern
Design patterns were made very popular some years ago by a book written on them
for object-oriented software development [3]. But the idea is more general than that:
it can be fruitfully extended to any particular engineering discipline and in particular
to system engineering as envisaged here.

The idea is to write down some predefined small engineering recipes that can be
reused in many different situations, provided these recipes are instantiated accordingly.
In our case, it takes the form of some proved parameterized models, which can be
incorporated in a large project. The nice effect is that it saves redoing proofs that have
been done once and for all in the pattern development. Tools can be developed to easily
instantiate and incorporate patterns in a systematic fashion.

Animation
Here is a strange thing: in previous sections, we heavily proposed to base our correctness
assurance on modeling and proving. And, in this section, we are going to say that, well,
it might also be good to “animate” (that is “execute”) our models!

But, we thought that mathematics was sufficient and that there was no need to
execute. Is there any contradiction here? Are we in fact not so sure after all that our
mathematical treatment is sufficient, that mathematics are always “true”? No, after the
proof of the Pythagorean Theorem, no mathematician would think of measuring the
hypotenuse and the two sides of a right triangle to check the validity of the theorem!
So why execute our models?

We have certainly proved something and we have no doubts about our proofs, but
more simply are we sure that what we proved was indeed the right thing to prove?
Things might be difficult to swallow here: we wrote (painfully) the definitions and
requirements document precisely for that reason, to know exactly what we have to
prove. And now we claim that perhaps what the requirements document said was not
what is wanted. Yes, that is the way it is: things are not working in a linear fashion.

Animating directly the model (we are not speaking here of doing a special simulation,
we are using the very model which we proved) and showing this animation of the entire

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xx Prologue: Faultless systems – yes we can!

system (not only the software part) on a screen is very useful to check in another way
(besides the requirements document) that what we want is indeed what we wrote. Quite
often, by doing this, we discover that our requirements document was not accurate
enough or that it required properties that are not indispensable or even different from
what we want.

Animation complements modeling. It allows us to discover that we might have to
change our minds very early on. The interesting thing is that it does not cost that much
money, far less indeed than doing a real execution on the final system and discovering
(but far too late) that the system we built is not the system we want.

It seems that animation has to be performed after proving, as an additional phase
before the programming phase. No, the idea is to use animation as early as possible
during the horizontal refinement phase, even on very abstract steps. The reason is that
if we have to change our requirements (and thus redo some proofs), it is very important
to know exactly what we can save in our model and where we have to modify our model
construction.

There is another positive outcome in animating and proving simultaneously. Remem-
ber, we said that proving was a way to debug our model: a proof that cannot be done is
an indication that we have a “bug” in our model or that our model is too poor. The fact
that an invariant preservation proof cannot be done can be pointed out and explained
by an animation even before doing the proof. Deadlock freedom counter-examples are
quite often discovered very easily by animation. Notice that animation does not mean
that we can suspend our proof activity, we just wanted to say that it is a very useful
complement to it.

Tools
Tools are important to develop correct systems. Here we propose to depart from the
usual approach where there exists a (formal) text file containing models and their
successive refinement. It is far more appropriate to have a database at our disposal.
This database handles modeling objects such as models, variables, invariant, events,
guards, actions, and their relationships, as we have presented them in previous sections.

Usual static analyzers can be used on these components for lexical analysis, name
clash detection, mathematical text syntactic analysis, refinement rules verification, and
so on.

As said above, an important tool is the one called the proof obligation generator,
that analyzes the models (invariants, events) and their refinements in order to produce
corresponding statements to prove.

Finally, some proving tools (automatic and interactive) are needed to discharge the
proof obligations provided by the previous tool. An important thing to understand

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can! xxi

here is that the proofs to be performed are not the kind of proofs a professional math-
ematician would tackle (and be interested in). Our proving tool has to take this into
account.

In a mathematical project, the mathematician is interested in proving one theo-
rem (say, the four-color theorem) together with some lemmas (say, 20 of them). The
mathematician does not use mathematics to accompany the construction of an arte-
fact. During the mathematical project, the problem does not change (this is still the
four-color problem).

In an engineering project, thousands of predicates have to be proved. Moreover, what
we have to prove is not known right from the beginning. Note that again we do not
prove that trains do not collide; we prove that the system we are constructing ensures
that, under certain hypotheses about the environment, trains do not collide. What
we have to prove evolves with our understanding of the problem and our (non-linear)
progress in the construction process.

As a consequence, an engineering prover needs to have some functionalities which
are not needed in provers dedicated to perform proofs for mathematicians. To cite two
of these functionalities: differential proving (how to figure out which proofs have to be
redone when a slight modification to the model occurs) and proving in the presence of
useless hypotheses.

Around the tools we have presented in this section, it is very useful to add a number of
other tools using the same core database: animating tools, model-checking tools, UML
transformation tools, design pattern tools, composition tools, decomposition tools, and
so on. It means that our tooling system must be built in such a way that this extension
approach is facilitated. A tool developed according to this philosophy is the Rodin
platform which can be freely downloaded from [4].

The problem of legacy code
The legacy code question has a dual aspect: either (1) we want to develop a new piece
of software which is connected to some legacy code, or (2) we want to renovate a certain
legacy code.

Problem (1) is the most common one; it is almost always found in the development
of a new piece of software. In this case, the legacy code is just an element of the
environment of our new product. The challenge is to be able to model the behavior
we can observe of the legacy code so that we can enter it in the model as we do it
with any other element of the environment. To do this, the requirements document of
our new product must contain some elements concerned with the legacy code. Such
requirements (assumptions) have to be defined informally as we explained above.

The goal is to develop in our model the minimal interface which is compatible with
the legacy code. As usual, the key is abstraction and refinement: how can we gradually

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xxii Prologue: Faultless systems – yes we can!

introduce the legacy code in our model in such a way that we take full account of the
concrete interface it offers.

Problem (2) is far more difficult than the previous one. In fact, such renovations
often give very disappointing results. People tend to consider that the legacy code “is”
the requirements document of the renovation. This is an error.

The first step is to write a brand new requirements document, not hesitating to
depart from the legacy code by defining abstract requirements that are independent
from the precise implementation seen in the legacy code.

The second step is to renovate the legacy code by developing and proving a model
of it. The danger here is to try to mimic too closely the legacy code because it might
contain aspects that are not comprehensible (except for the absent legacy code pro-
grammer(s)) and that are certainly not the result of a formal modeling approach.

Our advice here is to think twice before embarking on such a renovation. A better
approach is to develop a new product. People think it might be more time consuming
than a simple renovation; experience shows that this is rarely the case.

The use of set-theoretic notation
Physicists or operational researchers, who also proceed by constructing models, never
invent specific languages to do so; they all use classical set-theoretic notations.

Computer scientists, because they have been educated to program only, believe that
it is necessary to invent specific languages to do the modeling. This is an error. Set-
theoretic notations are well suited to perform our system modeling, and, moreover, we
can understand what it means when we write a formal statement!

We also hear very frequently that we must hide the use of mathematical notation,
because engineers will not understand it and be afraid of it. This is nonsense. Can we
imagine that it is necessary to hide the mathematical notation used in the design of
an electrical network because electrical engineers will be frightened by it?

Other validation approaches
For decades, there have been various approaches dedicated to the validation of software.
Among them are tests, abstract interpretation, and model checking.

These approaches validate the solution, the software, not the problem, the global
system. In each case, we construct a piece of software and then (and only then) try to
validate it (although it is not entirely the case with model checking, which is also used
for problem validation). To do so, we think of a certain desired property and check
that the software is indeed consistent with it. If it is not, then we have to modify the
software and thus, quite often, introduce more problems. It is also well known that
such approaches are very expensive, far more than the pure development cost.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Prologue: Faultless systems – yes we can! xxiii

We do not think that these approaches alone are appropriate. However, we are not
saying of course that we should reject them; we are just saying they might complement
the modeling and proving approach.

Innovation
Big industrial corporations are often unable to innovate. They sometimes do so how-
ever, provided a very large amount of money is given to them precisely for this. Needless
to say, it is very rare. It is well known that many, so-called, research and development
(R&D) divisions of big companies are not providing any significant technologies for
their business units.

Nevertheless, financing agencies still insist on having practical research proposals
connected with such large companies. This is an error. They would do a better job by
accepting connections with far smaller more innovative entities.

It is my belief that the introduction into industry of the approach advocated here
should be done through small innovative companies rather than big corporations

Education
Most of the people presently involved in large software engineering projects are not
correctly educated. Companies think that programming jobs can be done by junior
people with little or no mathematical background and interest (quite often program-
mers do not like mathematics; this is why they choose computing in the first place).
All this is bad. The basic background of a system engineer must be a mathematical
education at a good (even high) level.

Computing should come second, after the necessary mathematical background has
been well understood. As long as this is not the case, progress will not be made. Of
course, it is clear that many academics will disagree with this; it is not the smallest
problem we have to face. Many academics still confuse computation and mathematics.

It is far less expensive to have a few well-educated people than an army of people
who are not educated at the right level. This is not an elitist attitude: who would
think that a doctor or an architect can perform well without the right education in his
discipline? Again, the fundamental basic discipline of system and software engineers is
(discrete) mathematics.

Two specific topics to be taught to future software engineers are: (1) the writing of
requirements documents (this is barely present in the practical software engineering
curriculum), and (2) the construction of mathematical models. Here the basic approach
is a practical one; it has to be taught by means of many examples and projects to be
undertaken by the students. Experience shows that the mastering of the mathematical

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xxiv Prologue: Faultless systems – yes we can!

approach (including the proofs) is not a problem for students with a good previous
mathematical background.

Technology transfer
Technology transfer of this kind in industry is a serious problem. It is due to the
extreme reluctance of managers to modify their development process. Usually such
processes are difficult to define and more difficult to be put into practice. This is the
reason why managers do not like to modify them.

The incorporation in the development process of the important initial phase of re-
quirements document writing, followed by another important phase of modeling, is
usually regarded as dangerous, as these additional phases impose some significant ex-
penses at the beginning of a project. Again, managers do not believe that spending
more initially will mean spending less at the end. However, experience shows that the
overall expenditure is drastically reduced, since the very costly testing phase at the
end can be significantly less, as is the considerable effort needed to patch design errors.

Above all, the overall initial action needed in order to transfer a technology to
industry is to perform a very significant preliminary education effort. Without that
initial effort, any technology transfer attempt is due to fail.

It should be noted that there exist also some fake technology transfers where people
pretend to use a formal approach (although they did not) just to get the “formal”
stamp given to them by some authority.

References
The ideas presented in this short prologue are not new. Most of them come from the
seminal ideas of Action Systems developed in the eighties and nineties. Important
papers on Action Systems (among many others) are [1] and [2].

More recently, some of the ideas presented here have been put into practice. You can
consult the web site [4] and, of course, read this book for more information, examples,
and tool description.

[1] R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control.
2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributing Computing (1983)

[2] M. Butler. Stepwise refinement of communicating systems. Science of Computer Program-
ming 27, 139–173 (1996)

[3] E. Gamma et al. Design Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley (1995).

[4] http://www.event-b.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


Acknowledgments

The development of this book on Event-B was a long process, taking me more than
ten years.

A book of this importance in size and content cannot be produced by one person
alone. During my years at ETH Zurich (one of the two Swiss Federal Institutes of
Technology), I gradually elaborated the many examples which are presented here. This
was done with the help of many people and also the insightful feedback of my students.

I am extremely grateful for the permanent help given to me by Dominique Cansell.
Without him, this book would have been very different! In many cases, I was completely
blocked and could only proceed thanks to Dominique’s advice. He has continually read
the versions of the book as it has developed, always giving very important suggestions
for improvements. Dominique, many thanks to you.

Another significant source of help came from the Rodin and Deploy teams in Zurich
(Rodin and Deploy are the names of European Projects which participated in the
financing of this effort). Members of the teams were Laurent Voisin, Stefan Hallerstede,
Thai Son Hoang, Farhad Mehta, François Terrier, and Matthias Schmalz. Numerous
discussions were necessary to gradually develop a fruitful cooperation between the
Event-B corpus and the Rodin Platform, which is now available as an open source tool
set. Among these people, Laurent Voisin played an outstanding role. Laurent is the
architect of the tool; his immense competence in tool development allowed us to have
now a tool which is the indispensable support of Event-B. Laurent was also at the
origin of some key concepts in Event-B. Laurent, many thanks to you.

Members of the teams mentioned above also assisted me with numerous courses
(both introductory and advanced) I gave on this topic at ETH Zurich. They invented
many exercises and projects that were proposed to students. Adam Darvas, as well
as the aforementioned team members, was also an assistant for my lectures. I was
surprised by his ability to quickly master these subjects and to give interesting feedback.
Gabriel Katz, a student at ETH, also joined the team of assistants and later became
a temporary member of the development team.

xxv

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


xxvi Acknowledgments

Other people at ETH were involved in one way or another in the Event-B develop-
ment: David Basin, Peter Müller, and Christoph Sprenger. More generally, members of
the ETH Formal Methods Club, which met once a week, were very active in bringing
comments and feedback on the ongoing development of Event-B: among them were
Joseph Ruskiewicz, Stephanie Balzer, Bernd Schöller, Vijay D’silva, Burkhart Wolf,
and Achim Brucker.

Outside Zurich, a number of people were also active participants in this effort. Among
them, I am very happy to mention Christophe Métayer. He plays an outstanding part in
the usage of Event-B in industry and also in the development of some additional tools.
More generally, Systerel, the company led by François Bustany, where Laurent Voisin
and Christophe Métayer are now working, is playing a key role in the development of
Event-B in industry.

As members of the Rodin and Deploy European Projects, Michael Butler and Michael
Leuschel were very helpful with their competence in formal methods during the many
years of the lives of these Projects. Both Michael Butler in Southampton and Michael
Leuschel in Düsseldorf built, together with their teams, very interesting tools enlarging
those developed in Zurich.

Other people, such as Dominique Méry, Michel Sintzoff, Egon Börger, Ken Robinson,
Richard Banach, Marc Frappier, Henri Habrias, Richard Bornat, Guy Vidal-Naquet,
Carroll Morgan, Leslie Lamport, and Stephan Merz, helped in one way or another
during the many scientific meetings that happened over the years.

Finally, I would like to thank particularly Tony Hoare and Ralph Back. Their influ-
ence on this work was extremely important. The seminal ideas of Edsger Dijkstra were
also permanently applied in Event-B.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Frontmatter
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org

