
1

Introduction

1.1 Motivation
The intent of this book is to give some insights on modeling and formal reasoning.
These activities are supposed to be performed before undertaking the effective coding
of a computer system, so that the system in question will be correct by construction.

In this book, we will thus learn how to build models of programs and, more generally,
discrete systems. But this will be done with practice in mind. For this we shall study
a large number of examples coming from various sources of computer system devel-
opment: sequential programs, concurrent programs, distributed programs, electronic
circuits, reactive systems, etc.

We will understand that the model of a program is quite different from the program
itself. And we will learn that it is far easier to reason about the model than about
the program. We will be made aware of the very important notions of abstraction and
refinement; the idea being that an executable program is only obtained at the final
stage of a sometimes long sequence consisting of gradually building more and more
accurate models of the future program (think of the various blueprints made by an
architect).

We shall make it very clear what we mean by reasoning about a model. This will
be done by using some simple mathematical methods, which will be presented first by
means of some examples then by reviewing classical logic (propositional and predicate
calculus) and set theory. We will understand the necessity of performing proofs in a
very rigorous fashion.

We will also understand how it is possible to detect the presence of inconsistencies in
our models just by the fact that some proofs cannot be done. The failure of the proof
will provide us with some helpful clues about what is wrong or insufficiently defined
in our model. We will use such tools and see how easy it is to perform proofs with a
computer.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


2 Introduction

The formalism we use throughout the book is called Event-B. It is a simplification
as well as an extension of the B formalism [1] which was developed ten years ago
and which has been used in a number of large industrial projects [4], [3]. The formal
concepts used in Event-B are by no means new. They were proposed a long time
ago in a number of parent formalisms, such as Action Systems [6], TLA+ [2], and
UNITY [5].

The book is organized around examples. Each chapter contains a new example (some-
times several) together with the necessary formalism allowing the mathematical con-
cepts being used to be understood. Of course, such concepts are not repeated from one
chapter to the other, although they are sometimes made more precise. As a matter
of fact, each chapter is an almost independent essay. The proofs done in each chapter
have all been performed using the tools of the open source Rodin Platform [7] (see also
the website “event-b.org”).

The book can be used as a textbook by presenting each chapter in one or more
lectures. After giving a small summary of the various chapters in the next section,
a possible use for the book in an introductory as well as an advanced course will be
proposed.

1.2 Overview of the chapters
Let us now list the various chapters of the book and give a brief outline of each of
them.

Chapter 1: Introduction

The intent of this first (non-technical) chapter is to introduce you to the notion of a
formal method. It also intends to make clear what we mean by modeling. We shall see
what kind of systematic conventions we shall use for modeling. But we shall also notice
that there is no point in embarking on the modeling of a system without knowing what
the requirements of this system are. For this, we are going to study how a requirements
document has to be written.

Chapter 2: Controlling cars on a bridge

The intent of this chapter is to introduce a complete example of a small system de-
velopment. We develop the model of a system controlling cars on a one-way bridge
between an island and the mainland. As an additional constraint, the number of cars
on the island is limited. The physical equipment is made of traffic lights and car sensors

During this development, we will be made aware of the systematic approach we are
using: it consists in developing a series of more and more accurate models of the system

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


1.2 Overview of the chapters 3

we want to construct. Note that each model does not represent the programming of our
system using a high-level programming language, it rather formalizes what an external
observer of this system could perceive of it.

Each model will be analyzed and proved, thus enabling us to establish that it is
correct relative to a number of criteria. As a result, when the last model is finished, we
shall be able to say that this model is correct by construction. Moreover, this model
will be so close to a final implementation that it will be very easy to transform it into
a genuine program.

The correctness criteria alluded to above will be made completely clear and system-
atic by giving a number of proof obligation rules, which will be applied to our models.
After applying such rules, we shall have to prove formally a number of statements. To
this end, we shall also give a reminder of the classical rules of inference of the sequent
calculus. Such rules concern propositional logic, equality, and basic arithmetic. The
idea here is to give the reader the opportunity to manually prove the statements as
given by the proof obligation rules. Clearly, such proofs could easily be discharged by
theorem provers (as the ones used in the Rodin Platform), but we feel it important
at this stage that the reader takles these proofs before using an automatic theorem
prover. Notice that we do not claim that a theorem prover would perform these proofs
the way it is proposed here; quite often, a tool does not work like a human being
does.

Chapter 3: A mechanical press controller

In this chapter, we develop again the controller of a complete system: a mechanical
press. The intention is to show how this can be done in a systematic fashion in order to
obtain the correct final code. We first present, as usual, the requirement document of
this system. Then we develop two general design patterns which we shall subsequently
use. The development of these patterns will be made by using the proofs as a means of
discovering the invariants and the guards of the events. Finally, the main development
of the mechanical press will take place.

In this chapter, we illustrate how the usage of formal design patterns can help tack-
ling systematic correct developments.

Chapter 4: A simple file transfer protocol

The example introduced in this chapter is quite different from the previous ones, where
the program was supposed to control an external situation (cars on a bridge or a
mechanical press). Here we present a, so-called, protocol to be used on a computer
network by two agents. This is the very classical two-phase handshake protocol. A
very nice presentation of this example can be found in the book by L. Lamport [2].

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

This example will allow us to extend our usage of the mathematical language with
such constructs as partial and total functions, domain and range of functions, and
function restrictions. We shall also extend our logical language by introducing univer-
sally quantified formulas and corresponding inference rules.

Chapter 5: The Event-B Modeling notation and proof obligation rules

In the previous chapters, we used the Event-B notation and the various corresponding
proof obligation rules without introducing them in a systematic fashion. We presented
them instead in the examples when they were needed. This was sufficient for the simple
examples studied so far because we used part of the notation and part of the proof
obligation rules only. But it might not be adequate to continue like this when presenting
more complicated examples in subsequent chapters.

The purpose of this chapter is thus to correct this. First, we present the Event-B
notation as a whole, in particular the parts we have not used so far, then we present
all the proof obligation rules. This will be illustrated with a simple running example.
Note that the mathematical justifications of the proof obligation rules will be covered
in Chapter 14.

Chapter 6: Bounded re-transmission protocol

In this chapter, we extend the file transfer protocol example of Chapter 4. The added
constraint with regard to the previous simple example is that we now suppose that
the channels situated between the two sites are unreliable. As a consequence, the effect
of the execution of the bounded re-transmission protocol is to only partially copy a
sequential file from one site to another. The purpose of this example is precisely to
study how we can cope with this kind of problem, i.e. dealing with fault tolerances
and how we can formally reason about them. This example has been studied in many
papers among which is [8].

Notice that, in this chapter, we do not develop proofs to the extent we did in the
previous chapters, we only give some hints and let the reader develop the formal proof.

Chapter 7: Development of a concurrent program

In previous chapters, we saw examples of sequential program developments (note that
we shall come back to sequential program developments in Chapter 15) and distributed
program developments. Here we show how we can develop concurrent program de-
velopments. Such concurrent programs are different from distributed programs where
various processes are executed on different computers in such a way that they cooperate
(by exchanging messages in a well-defined manner) in order to achieve a well-specified

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


1.2 Overview of the chapters 5

goal. This was typically the case in the examples presented in Chapters 4 and 6. It will
also be the case in Chapters 10, 11, 12, and 13.

In the case of concurrent programs, we also have different processes, but this time
they are usually situated on the same computer and they compete rather than co-
operate in order to gain access to some shared resources. The concurrent programs
do not communicate by exchanging messages (they ignore each other), but they can
interrupt each other in a rather random way. We illustrate this approach by devel-
oping the concurrent program known to be “Simpson’s 4-slot Fully Asynchronous
Mechanism” [14].

Chapter 8: Development of electronic circuits

In this chapter, we present a methodology to develop electronic circuits in a systematic
fashion. In doing so, we can see that the Event-B approach is general enough to be
adapted to different execution paradigms. The approach used here is similar to the
one we shall use for developing sequential programs in Chapter 15: the circuit is first
defined by means of a single event doing the job “in one shot”, then the initial very
abstract transition is refined into several transitions until it becomes possible to apply
some syntactic rules able to merge the various transitions into a single circuit.

Chapter 9: Mathematical language

This chapter does not contain any examples as in previous chapters (except Chapter
5). It rather contains the formal definition of the mathematical language we use in this
book. It is made up of four sections introducing successively the propositional language,
the predicate language, the set-theoretic language, and the arithmetic language. Each
of these languages will be introduced as an extension of the previous one.

Before introducing these languages, however, we shall also give a brief summary of
the sequent calculus. Here we shall insist on the concept of proof.

At the end of the chapter, we present the way various classical but “advanced” con-
cepts are formalized: transitive closure, various graph properties (in particular strong
connectivity), lists, trees, and well-founded relations. Such concepts will be used in
subsequent chapters.

Chapter 10: Leader election on a ring-shaped network

In this chapter, we study another interesting problem in distributed computation. We
have a possibly large (but finite) number of agents, not just two as in the examples of
Chapters 4 and 6 (file transmission protocols). These agents are disposed on different
sites that are connected by means of unidirectional channels forming a ring. Each agent

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


6 Introduction

is executing the same piece of coding. The distributed execution of all these identical
programs should result in a unique agent being “elected the leader”. This example comes
from a paper written by G. Le Lann in the 1970s [9].

The purpose of this chapter is to learn more about modeling, in particular in the
area of non-determinism. We shall also use more mathematical conventions, such as the
image of a set under a relation, the relational overriding operator, and the relational
composition operator, conventions which have all been introduced in the previous chap-
ter. Finally, we are going to study some interesting data structures: ring and linear list,
also introduced in the previous chapter.

Chapter 11: Synchronizing a tree-shaped network

In the example presented in this chapter, we have a network of nodes, which is slightly
more complicated than in the previous case where we were dealing with a ring. Here
we have a tree. At each node of the tree, we have a process performing a certain task,
which is the same for all processes (the exact nature of this task is not important).
The constraint we want these processes to observe is that they remain synchronized.
An additional constraint of our distributed algorithm states that each process can only
communicate with its immediate neighbors in the tree. This example has been treated
by many researchers [10], [11].

In this chapter, we shall encounter another interesting mathematical object: a tree.
We shall thus learn how to formalize such a data structure and see how we can fruitfully
reason about it using an induction rule. We remind the reader that this data structure
has already been introduced in Chapter 9.

Chapter 12: Routing algorithm for a mobile agent

The purpose of the example developed in this chapter is to present an interesting
routing algorithm for sending messages to a mobile phone. In this example, we shall
again encounter a tree structure as in the previous chapter, but this time the tree
structure will be dynamically modified. We shall also see another example (besides the
“bounded re-transmission protocol” of Chapter 6) where the usage of clocks will play
a fundamental role. This example is taken from [12].

Chapter 13: Leader election on a
connected graph network

The example presented in this chapter resembles the one presented in Chapter 10; it
is again a leader election protocol, but here the network is more complicated than a
simple ring. More precisely, the goal of the IEEE-1394 protocol, [13], is to elect in a

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


1.2 Overview of the chapters 7

finite time a specific node, called the leader, in a network made of a finite number of
nodes linked by some communication channels. This election is done in a distributed
and non-deterministic way.

The network has got some specific properties. As a mathematical structure, it is
called a free tree; it is a finite graph, which is symmetric, irreflexive, connected, and
acyclic. In this chapter, we shall thus learn how to deal and reason with such a complex
data structure, which was already presented in Chapter 9.

Chapter 14: Mathematical models for proof obligations

In this chapter, some mathematical justifications are presented to the proof obligation
rules introduced in Chapter 5. This is done by constructing some set-theoretic mathe-
matical models based on the trace semantics of Event-B developments. We show that
the proof obligation rules used in this book are equivalent to those dictated by the
mathematical models of Event-B developed in this chapter.

Chapter 15: Development of sequential programs

This chapter is devoted entirely to the development of sequential programs. We shall
first study the structure of such programs. They are made up of a number of assignment
statements, glued together by means of a number of operators: sequential composition,
conditional, and loop. We shall see how this can be modeled by means of simple tran-
sitions, which are the essence of the Event-B formalism. Once such transitions are
developed gradually by means of a number of refinement steps, we shall see how they
can be put together using a number of merging rules, the nature of which is completely
syntactic.

All this will be illustrated with many examples, ranging from simple array and
numerical programs to more complex pointer programs.

Chapter 16: A location access controller

The purpose of this chapter is to study another example dealing with a complete system
such as the one we studied in Chapters 2 and 3, where we controlled cars on a bridge
and a mechanical press. We shall construct a system which will be able to control the
access of certain people to different locations of a “workplace”, for example: a university
campus, an industrial site, a military compound, a shopping mall, etc.

The system we now study is a little more complicated than the previous ones. In
particular, the mathematical data structure we are going to use is more advanced. Our
intention is also to show that during the reasoning of the model, we shall discover a
number of important missing points in the requirements document.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


8 Introduction

Chapter 17: Train system

The purpose of this chapter is to show the specification and construction of a complete
computerized system. The example we are interested in is called a train system. By
this, we mean a system that is practically managed by a train agent, whose role is to
control the various trains crossing part of a certain track network situated under his
supervision. The computerized system we want to construct is supposed to help the
train agent in doing this task.

This example presents an interesting case of quite complex data structures (the track
network) where mathematical properties have to be defined with great care – we want
to show that this is possible.

This example also shows a very interesting case where the reliability of the final
product is absolutely fundamental: several trains have to be able to safely cross the
network under the complete automatic guidance of the software product we want to
construct. For this reason, it will be important to study the bad incidents that could
happen and which we want to either completely avoid or safely manage.

The software must take account of the external environment which is to be carefully
controlled. As a consequence, the formal modeling we propose here will contain not
only a model of the future software we want to construct, but also a detailed model
of its environment. Our ultimate goal is to have the software working in perfect syn-
chronization with the external equipment, namely the track circuits, the points (or
“switch”), the signals, and also the train drivers. We want to prove that trains obeying
the signals, set by the software controller, and then (blindly) circulating on the tracks
where the points (switches) have been positioned, again by the software controller, will
do so in a completely safe manner.

Chapter 18: Problems

This last chapter contains only problems which readers might try to tackle. Rather
than spreading exercises and projects through each chapter of the book, we preferred
to put them all in a single chapter.

All problems have to be performed with the Rodin Platform, which, again, can be
downloaded from the web site “event-b.org”.

Besides exercises (supposed to be rather easy) and projects (supposed to be larger
and more difficult than exercises), we propose some mathematical developments which
can also be proved with the Rodin Platform.

1.3 How to use this book
The material presented in this book has been used to teach various courses, essentially
either introductory courses or advanced courses. Here is what can be proposed for these
two categories of courses.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


1.3 How to use this book 9

Introductory course The danger with such an introductory course is to present too
much material. The risk is to have the attendees being completely overwhelmed. What
can be presented then is the following:

• Chapter 1 (introduction),
• Chapter 2 (cars on a bridge),
• Chapter 3 (mechanical press),
• Chapter 4 (simple file transfer),
• some parts of Chapter 5 (Event-B notation),
• some parts of Chapter 9 (mathematical language),
• some parts of Chapter 15 (sequential program development).

The idea is to avoid encountering complex concepts, only simple mathematical con-
structs: propositional calculus, arithmetic, and simple set-theoretic constructs.

Chapter 2 (cars on a bridge) is important because the example is extremely easy to
understand and the basic notions of Event-B and of classical logic are introduced by
means of that simple example. However, we have to be careful to present this chapter
very slowly, doing carefully the proofs with the students because they are usually very
confused when they encounter this kind of material for the first time. In this example,
the data structures are very simple: numbers and booleans.

Chapter 3 (mechanical press) shows again a complete development. It is simple and
the usage of formal design patterns is helpful to construct the controller in a systematic
fashion.

Chapter 4 (simple file transfer) allows us to present a very simple distributed pro-
gram. Students will learn how this can be specified and later refined in order to obtain
a very well-known distributed protocol. They have to understand that such a protocol
can be constructed by starting from a very abstract (non-distributed) specification,
which is gradually distributed among various (here two) processes. This example con-
tains some more elaborated data structures than those used in the previous chapter:
intervals, functions, restrictions.

Chapter 5 (Event-B notation) contains a summary of the Event-B notation and
of the proof obligation rules. It is important that the students see that they use a
well-defined, although simple, notation, which is given a mathematical interpretation
through, the proof obligation rules. It is not necessary however to go too deeply into
fine details in such an introductory course.

Chapter 9 (mathematical language) allows us to depart a bit from the examples. It
is a refresher of the mathematical concepts in the middle of the course. The important
aspect here is to have the students becoming more familiar with proofs undertaken in
set-theoretic concepts. Students have to be given a number of exercises for translating
set-theoretic constructs into predicate calculus. It is not necessary to cover this chapter
from beginning to end.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org


10 Introduction

Chapter 15 (sequential program development) is partly an introductory course be-
cause students are used to writing programs. It is important to understand that pro-
grams can be constructed in a systematic fashion; to understand eventually the dis-
tinction between formal program construction (which we do here) versus program ver-
ification (where the program is “proved” once developed). Some of the examples must
be avoided in an introductory course, namely those dealing with pointers that are too
difficult.

At the end of the course, students should be comfortable with the notions of ab-
straction and refinement. They should also be less afraid of tackling formal proofs of
simple mathematical statements. Finally, they should be convinced that it is possible
to develop programs that work first time!

Students could be made aware of the Rodin Platform tool [7], which is devoted
to Event-B. But we think that they must first do some proofs by hand in order to
understand what the tool is doing.

Advanced course Here we suppose that the students have already attended the
introductory course. In this case, it is not necessary to repeat the presentations of
Chapters 2 and 3. However, students will be encouraged to read them again. The
course then consists in presenting all the other chapters.

It is important for the students to understand that the same Event-B approach
can be used to model systems with very different execution paradigms: sequential,
distributed, concurrent, and parallel.

Students should be comfortable reasoning with complex data structures: list, trees,
DAGs, arbitrary graphs. They must understand that set theory allows us to build
very complex data structures. For these reasons, the examples presented in Chapters
11 (synchronizing processes in a tree), 12 (mobile agent), 13 (IEEE protocol), and 17
(train system) are all important.

In this course, students should not do manual proofs any more as was the case in
the previous introductory course. They must use a tool such as the Rodin Platform,
which is specially devoted to Event-B and associated plugins [7].

1.4 Formal methods
The term “formal method” leads nowadays to great confusion because its usage has
been enlarged to cover many different activities. Some typical questions we can ask
about such methods are the following: Why use formal methods? What are they used
for? When do we need to use such methods? Is UML a formal method? Are they needed
in object-oriented programming? How can we define formal methods?

We will look at these questions gradually. Formal methods have to be used by peo-
ple who have recognized that the (internal) program development process they use

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89556-9 - Modeling in Event-B: System and Software Engineering
Jean-Raymond Abrial
Excerpt
More information

http://www.cambridge.org/9780521895569
http://www.cambridge.org
http://www.cambridge.org

