“Mechanotransduction” is the term for the ability, first described by nineteenth-century anatomist Julius Wolff, of living tissues to sense mechanical stress and respond by tissue remodeling. More recently, the scope of mechanotransduction has been expanded to include the sensation of stress, its translation into a biochemical signal, and the sequence of biological responses it produces. This book looks at mechanotransduction in a more restricted sense, focusing on the process of stress sensing and transducing a mechanical force into a cascade of biochemical signals. This stress has become increasingly recognized as one of the primary and essential factors controlling biological functions, ultimately affecting the function of the cells, tissues, and organs. A primary goal of this broad book is also to help define the new field of mechanomics, which attempts to describe the complete mechanical state of a biological system.

Dr. Mohammad R. K. Mofrad is currently Assistant Professor of Bioengineering at the University of California, Berkeley, where he is also an affiliated faculty member of graduate programs in applied science and technology and biophysics. Dr. Mofrad received his B.A.Sc. degree from Sharif University of Technology. After earning M.A.Sc. and Ph.D. degrees from the Universities of Waterloo and Toronto, respectively, he spent two years at MIT and Harvard Medical School/Massachusetts General Hospital as a post-doctoral Fellow. Before joining the faculty at Berkeley, Dr. Mofrad was a Principal Research Scientist at MIT for nearly two years. At Berkeley, he has developed and taught several courses, including Cell Mechanics and Mechanotransduction and Molecular Cell Biomechanics. He is the founder of the Mechanotransduction Knowledgebase Web site, mechanotransduction.org.

Dr. Roger D. Kamm has long been interested in biomechanics, beginning with his work in vascular and pulmonary physiology and leading to his more recent work in cell and molecular mechanics in the context of cellular responses to mechanical stress. Dr. Kamm has been on the faculty at MIT since receiving his Ph.D. in 1977 and now holds a joint appointment in the Biological Engineering and Mechanical Engineering Departments. He is currently the Chair of the U.S. National Committee on Biomechanics and the World Council on Biomechanics, and he is Director of the Global Enterprise for MicroMechanics and Molecular Medicine. Kamm has a long-standing interest in bioengineering education, directs a National Institute of Health–funded biomechanics training program; co-chaired the committee to form MIT’s new undergraduate major in biological engineering; and helped to develop MIT’s course on molecular, cellular, and tissue biomechanics.
Cellular Mechanotransduction

DIVERSE PERSPECTIVES FROM MOLECULES TO TISSUES

Edited by
Mohammad R. K. Mofrad
University of California Berkeley

Roger D. Kamm
Massachusetts Institute of Technology
Contents

Contributors vii
Preface xi

1. Introduction Roger D. Kamm and Mohammad R. K. Mofrad 1
2. Endothelial Mechanotransduction Peter F. Davies and Brian P. Helmke 20
3. Role of the Plasma Membrane in Endothelial Cell Mechanosensation of Shear Stress Peter J. Butler and Shu Chien 61
4. Mechanotransduction by Membrane-Mediated Activation of G-Protein Coupled Receptors and G-Proteins Yan-Liang Zhang, John A. Frangos, and Mirianas Chachisvilis 89
5. Cellular Mechanotransduction: Interactions with the Extracellular Matrix Andrew D. Doyle and Kenneth M. Yamada 120
6. Role of Ion Channels in Cellular Mechanotransduction – Lessons from the Vascular Endothelium Abdul I. Barakat and Andrea Gojova 161
8. Tensegrity as a Mechanism for Integrating Molecular and Cellular Mechanotransduction Mechanisms Donald E. Ingber 196
9. Nuclear Mechanics and Mechanotransduction Shinji Deguchi and Masaaki Sato 220
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Microtubule Bending and Breaking in Cellular Mechanotransduction</td>
<td>Andrew D. Bicek, Dominique Seetapun, and David J. Odde</td>
<td>234</td>
</tr>
<tr>
<td>11</td>
<td>A Molecular Perspective on Mechanotransduction in Focal Adhesions</td>
<td>Seung E. Lee, Roger D. Kamm, and Mohammad R. K. Mofrad</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>Protein Conformational Change: A Molecular Basis of Mechanotransduction</td>
<td>Gang Bao</td>
<td>269</td>
</tr>
<tr>
<td>13</td>
<td>Translating Mechanical Force into Discrete Biochemical Signal Changes: Multimodularity Imposes Unique Properties to Mechanotransductive Proteins</td>
<td>Vesa P. Hytönen, Michael L. Smith, and Viola Vogel</td>
<td>286</td>
</tr>
<tr>
<td>14</td>
<td>Mechanotransduction through Local Autocrine Signaling</td>
<td>Nikola Kojic and Daniel J. Tschumperlin</td>
<td>339</td>
</tr>
<tr>
<td>15</td>
<td>The Interaction between Fluid-Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Cell Mechanobiology</td>
<td>John M. Tarbell</td>
<td>360</td>
</tr>
<tr>
<td>16</td>
<td>Micro- and Nanoscale Force Techniques for Mechanotransduction</td>
<td>Nathan J. Sniadecki, Wesley R. Legant, and Christopher S. Chen</td>
<td>377</td>
</tr>
<tr>
<td>17</td>
<td>Mechanical Regulation of Stem Cells: Implications in Tissue Remodeling</td>
<td>Kyle Kurpinski, Randall R. R. Janairo, Shu Chien, and Song Li</td>
<td>403</td>
</tr>
<tr>
<td>18</td>
<td>Mechanotransduction: Role of Nuclear Pore Mechanics and Nucleocytoplasmic Transport</td>
<td>Christopher B. Wolf and Mohammad R. K. Mofrad</td>
<td>417</td>
</tr>
<tr>
<td>19</td>
<td>Summary and Outlook</td>
<td>Mohammad R. K. Mofrad and Roger D. Kamm</td>
<td>438</td>
</tr>
</tbody>
</table>

Index 445

Color plates follow page 180
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gang Bao</td>
<td>Department of Biomedical Engineering, Georgia Institute of Technology and Emory University</td>
</tr>
<tr>
<td>Abdul I. Barakat</td>
<td>Department of Mechanical and Aeronautical Engineering, University of California, Davis</td>
</tr>
<tr>
<td>Andrew D. Bicek</td>
<td>Department of Biomedical Engineering, University of Minnesota</td>
</tr>
<tr>
<td>Peter J. Butler</td>
<td>Department of Bioengineering, The Pennsylvania State University</td>
</tr>
<tr>
<td>Mirianas Chachisvils</td>
<td>La Jolla Bioengineering Institute, La Jolla, California</td>
</tr>
<tr>
<td>Christopher S. Chen</td>
<td>Department of Bioengineering, University of Pennsylvania</td>
</tr>
<tr>
<td>Shu Chien</td>
<td>Departments of Bioengineering and Medicine, University of California, San Diego</td>
</tr>
<tr>
<td>Peter F. Davies</td>
<td>Department of Pathology and Laboratory Medicine, Institute for Medicine and Engineering, University of Pennsylvania</td>
</tr>
<tr>
<td>Shinji Deguchi</td>
<td>Graduate School of Natural Science and Technology, Okayama University</td>
</tr>
<tr>
<td>Andrew D. Doyle</td>
<td>National Institute of Dental and Craniofacial Research, National Institutes of Health</td>
</tr>
<tr>
<td>Benjamin J. Dubin-Thaler</td>
<td>Cell Motion Laboratories, Inc.</td>
</tr>
<tr>
<td>John A. Frangos</td>
<td>La Jolla Bioengineering Institute, La Jolla, California</td>
</tr>
<tr>
<td>Andrea Gojova</td>
<td>Department of Mechanical and Aeronautical Engineering, University of California, Davis</td>
</tr>
</tbody>
</table>
Contributors

Brian P. Helmke
Department of Biomedical Engineering
University of Virginia

Mohammad R. K. Mofrad
Department of Bioengineering
University of California, Berkeley

Vesa P. Hytönen
Laboratory of Biologically Oriented Materials, Department of Materials
ETH Zurich

David J. Odde
Department of Biomedical Engineering
University of Minnesota

Donald E. Ingber
Departments of Pathology and Surgery
Harvard Medical School and Children’s Hospital

Masaaki Sato
Department of Bioengineering and Robotics
Tohoku University

Randall R. R. Janairo
Department of Bioengineering
University of California, Berkeley

Dominique Seetapun
Department of Biomedical Engineering
University of Minnesota

Roger D. Kamm
Departments of Mechanical Engineering and Biological Engineering
Massachusetts Institute of Technology

Michael P. Sheetz
Department of Biological Sciences
Columbia University

Nikola Kojic
Harvard-MIT Division of Health Science and Technology
Boston, Massachusetts

Michael L. Smith
Laboratory of Biologically Oriented Materials, Department of Materials
ETH Zurich

Kyle Kurpinski
Department of Bioengineering
University of California, Berkeley

Nathan J. Sniadecki
Department of Bioengineering
University of Pennsylvania

Seung E. Lee
Department of Bioengineering
University of California, Berkeley

John M. Tarbell
Department of Biomedical Engineering
The City College of New York

Wesley R. Legant
Department of Bioengineering
University of Pennsylvania

Daniel J. Tschumperlin
Molecular and Integrative Physiological Sciences
Harvard School of Public Health

Song Li
Department of Bioengineering
University of California, Berkeley
Contributors

Viola Vogel
Laboratory of Biologically Oriented Materials, Department of Materials
ETH Zurich

Christopher B. Wolf
Department of Bioengineering
University of California, Berkeley

Kenneth M. Yamada
National Institute of Dental and Craniofacial Research
National Institutes of Health

Yan-Liang Zhang
La Jolla Bioengineering Institute
La Jolla, California
Preface

Many studies during the past two decades have shed light on a wide range of cellular responses to mechanical stimulation. It is now widely accepted that stresses experienced in vivo are instrumental in numerous pathologies. One of the first diseases found to be linked to cellular stress was atherosclerosis, where it was demonstrated that hemodynamic shear stress influences endothelial function, and that conditions of low or oscillatory shear stress are conducive to the formation and growth of atherosclerotic lesions. Even before then, the role of mechanical stress on bone growth and healing was widely recognized, and since then, many other stress-influenced cell functions have been identified.

Many have investigated the signaling cascades that become activated as a consequence of mechanical stress, and these are generally well characterized. The initiating process, however, by which cells convert the applied force into a biochemical signal, termed “mechanotransduction,” is much more poorly understood, and only recently have researchers begun to unravel some of these fundamental mechanisms. Various processes and theories have been proposed to explain this phenomenon. The objective of this book is to bring together these different viewpoints to cellular mechanotransduction, ranging from the molecular basis of mechanotransduction phenomena to the tissue-specific events that lead to such processes. Our intent is to present in a single text the many and varied ways in which cellular mechanotransduction is viewed and, in doing so, spur on new experiments to test the theories, or the development of new theories themselves. We view this as an ongoing debate, where one of the leading proponents of each viewpoint could present his or her most compelling arguments in support of the model, so that members of the larger scientific community could form their own opinions. As such, this was intended to be a monograph that captured the current state of a rapidly evolving field. Since we began this project, however, it has been suggested that this book might meet the growing need for a text for courses taught specifically on cellular mechanotransduction. More broadly, it could be used to introduce concepts at the intersection of mechanics and biology, a field of study that has come to be termed “mechanobiology.” Or, even more broadly, this collection
might be useful as supplemental readings for a course that covers a range of topics in molecular, cellular, and tissue biomechanics. In any event, our hope is that this presentation might prove stimulating and educational to engineers, physicists, and biologists wishing to expand their understanding of the critical importance of mechanotransduction in cell function, and the various ways in which it might be understood.

In the end, we would like to extend our enormous thanks to all the contributing authors whose expert contributions made this text possible. Finally, we wish to express our deepest gratitude to Mr. Peter Gordon and his colleagues at Cambridge University Press, who provided us with the encouragement, technical assistance, and overall guidance that were essential to the ultimate success of this endeavor. In addition, we would like to acknowledge Ms. Elise Oranges, who steered us through the final stages of editing.

Mohammad R. K. Mofrad
University of California Berkeley

Roger D. Kamm
Massachusetts Institute of Technology