Contents

Preface

1 Hamiltonian formalism
1.1 Hamilton’s principle of stationary action
1.2 Hamiltonian equations of motion
1.3 The Poisson bracket
1.4 Canonical transformations
1.5 Generating functions of canonical transformations
1.6 Symmetries and integrals of motion
1.7 Lagrangian formalism for Grassmann variables
1.8 Hamiltonian formalism for Grassmann variables
1.9 Hamiltonian dynamics on supermanifolds
1.10 Canonical transformations on symplectic supermanifolds
1.11 Noether’s theorem for systems on supermanifolds
1.12 Non-canonical transformations
1.13 Examples of systems with non-canonical symplectic structures
1.14 Some generalizations of the Hamiltonian dynamics
1.15 Hamiltonian mechanics. Recent developments

2 Hamiltonian path integrals
2.1 Introduction
2.2 Hamiltonian path integrals in quantum mechanics
2.3 Non-standard terms and basic equivalence rules
2.4 Equivalence rules
2.5 Rules for changing the base point
2.6 Canonical transformations and Hamiltonian path integrals
2.7 Problems with non-trivial boundary conditions
2.8 Quantization by the path integral method

3 Dynamical systems with constraints
3.1 Introduction
3.2 A general analysis of dynamical systems with constraints
3.3 Physical variables in systems with constraints
3.4 Nonlinear Poisson brackets and systems with constraints

© in this web service Cambridge University Press
www.cambridge.org
Contents

4 Quantization of constrained systems 171
4.1 The Dirac method 171
4.2 The operator ordering problem in constraints 180
4.3 Relativistic particle 185
4.4 Elimination of non-physical variables. The second-class constraints 189

5 Phase space in gauge theories 192
5.1 A simple model 193
5.2 Harmonic oscillator with a conic phase space 205
5.3 The residual discrete gauge group and the choice of physical variables 209
5.4 Models with arbitrary simple compact gauge groups 222
5.5 Gauge systems with Grassmann variables 239
5.6 More general mechanical gauge systems with bosonic variables 244
5.7 Systems with Bose and Fermi degrees of freedom 256
5.8 Yang–Mills theories 265
5.9 Simple effects of the physical phase space structure in quantum theory 298

6 Path integrals in gauge theories 316
6.1 Preliminary remarks 316
6.2 Hamiltonian path integral for gauge systems with conic phase space 317
6.3 Models with more complicated structures of the physical phase space 325
6.4 Models with Grassmann variables 336
6.5 Hamiltonian path integral in an arbitrary gauge 338
6.6 Hamiltonian path integrals for gauge systems with bosons and fermions 349
6.7 The Kato–Trotter product formula for gauge theories 358
6.8 Simple consequences of the modification of the path integral for gauge systems 380

7 Confinement 386
7.1 Introduction 386
7.2 Kinematics. Gauge fields and fiber bundle theory 391
7.3 Dynamics. Quantization 403
7.4 External fields of charges and static forces. Confinement 405

8 Supplementary material 419
8.1 A brief survey of the group theory 419
8.2 Grassmann variables 428
8.3 Gaussian integrals, the Poisson summation formula, kernel Q_n, and Van Fleck determinant 436