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1

Introduction

We introduce here quarks and gluons. The analogy with electrodynamics
at short distances disappears at larger distances with the emergence
of the string tension, the force that confines the quarks and gluons
permanently into bound states called hadrons.
Subsequently we introduce the simplest relativistic field theory, the

classical scalar field.

1.1 QED, QCD, and confinement

Quantum electrodynamics (QED) is the quantum theory of photons
(γ) and charged particles such as electrons (e±), muons (µ±), protons
(p), pions (π±), etc. Typical phenomena that can be described by
perturbation theory are Compton scattering (γ + e− → γ + e−), and
pair annihilation/production such as e+ + e− → µ+ + µ−. Examples of
non-perturbative phenomena are the formation of atoms and molecules.
The expansion parameter of perturbation theory is the fine-structure
constant1 α = e2/4π.
Quantum chromodynamics (QCD) is the quantum theory of quarks

(q) and gluons (g). The quarks u, d, c, s, t and b (‘up’, ‘down’, ‘charm’,
‘strange’, ‘top’ and ‘bottom’) are analogous to the charged leptons νe, e,
νµ, µ, ντ , and τ . In addition to electric charge they also carry ‘color
charges’, which are the sources of the gluon fields. The gluons are
analogous to photons, except that they are self-interacting because they
also carry color charges. The strength of these interactions is measured
by αs = g2/4π (alpha strong), with g analogous to the electromagnetic
charge e. The ‘atoms’ of QCD are qq̄ (q̄ denotes the antiparticle of q)

1



2 Introduction

Fig. 1.1. Intuitive representation of chromoelectric field lines between a static
quark–antiquark source pair in QCD: (a) Coulomb-like at short distances;
(b) string-like at large distances, at which the energy content per unit length
becomes constant.

bound states called mesons† (π, K, η, η′, ρ, K∗, ω, φ, . . . ) and 3q bound
states called baryons (the nucleon N , and furthermore Σ, Λ, Ξ, ∆, Σ∗,
Λ∗, . . .). The mesons are bosons and the baryons are fermions. There
may be also multi-quark states analogous to molecules. Furthermore,
there are expected to be glueballs consisting mainly of gluons. These
bound states are called ‘hadrons’ and their properties as determined by
experiment are recorded in the tables of the Particle Data Group [2].
The way that the gluons interact among themselves has dramatic

effects. At distances of the order of the hadron size, the interactions are
strong and αs effectively becomes arbitrarily large as the distance scale
increases. Because of the increasing potential energy between quarks at
large distances, it is not possible to have single quarks in the theory:
they are permanently confined in bound states.
For a precise characterization of confinement one considers the theory

with gluons only (no dynamical quarks) in which static external sources
are inserted with quark quantum numbers, a distance r apart. The
energy of this configuration is the quark–antiquark potential V (r). In
QCD confinement is realized such that V (r) increases linearly with r as
r →∞,

V (r) ≈ σr, r →∞. (1.1)

The coefficient σ is called the string tension, because there are effective
string models for V (r). Such models are very useful for grasping some
of the physics involved (figure 1.1).
Because of confinement, quarks and gluons cannot exist as free parti-

† The quark content of these particles is given in table 7.1 in section 7.5.
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Fig. 1.2. Shape of the static qq̄ potential and the force F = ∂V/∂r.

cles. No such free particles have been found. However, scattering exper-
iments at high momentum transfers (corresponding to short distances)
have led to the conclusion that there are quarks and gluons inside the
hadrons. The effective interaction strength αs is small at short distances.
Because of this, perturbation theory is applicable at short distances or
large momentum transfers. This can also be seen from the force derived
from the qq̄ potential, F = ∂V/∂r. See figure 1.2. Writing conventionally

F (r) =
4
3
αs(r)
r2

, (1.2)

we know that αs → 0 very slowly as the distance decreases,

αs(r) ≈
4π

11 ln(1/Λ2r2)
. (1.3)

This is called asymptotic freedom. The parameter Λ has the dimension
of a mass and may be taken to set the dimension scale in quark-less
‘QCD’. For the glueball mass m or string tension σ we can then write

m = CmΛ,
√
σ = CσΛ. (1.4)

Constants like Cm and Cσ, which relate short-distance to long-distance
properties, are non-perturbative quantities. They are pure numbers
whose computation is a challenge to be met by the theory developed
in the following chapters.
The value of the string tension σ is known to be approximately

(400 MeV)2. This information comes from a remarkable property of the
hadronic mass spectrum, the fact that, for the leading spin states, the
spin J is approximately linear in the squared mass m2,

J = α0 + α′m2. (1.5)

See figure 1.3. Such approximately straight ‘Regge trajectories’ can be
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Fig. 1.3. Plot of spin J versus m2 (GeV2) for ρ- and π-like particles. The dots
give the positions of particles, the straight lines are fits to the data, labeled
by their particles with lowest spin. The line labeled ‘pot’ is L versus H2 for
the solution (1.10), for clarity shifted upward by two units, for mq = mρ/2,
σ = 1/8α′

ρ.

understood from the following simple effective Hamiltonian for binding
of a qq̄ pair,

H = 2
√
m2

q + p2 + σr. (1.6)

Here mq is the mass of the constituent quarks, taken to be equal for
simplicity, p = |p| is the relative momentum, r = |r| is the relative
separation, and the spin of the quarks is ignored. The potential is taken
to be purely linear, because we are interested in the large-mass bound
states with large relative angular momentum L, for which one expects
that only the long-distance part of V (r) is important.
For such states with large quantum number L the classical approx-

imation should be reasonable. Hence, consider the classical Hamilton
equations,

drk
dt

=
∂H

∂pk
,
dpk
dt

= −∂H
∂rk

. (1.7)

and the following Ansatz for a circular solution:

r1 = a cos(ωt), r2 = a sin(ωt), r3 = 0,

p1 = −b sin(ωt), p2 = b cos(ωt), p3 = 0. (1.8)
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Substituting (1.8) into (1.7) we get relations among ω, a, and b, and
expressions for p and r, which can be written in the form

p = b = σω−1, r = a = 2s−1σ−1p, s ≡
√
1 +m2

q/p
2, (1.9)

such that L and H can be written as

L = rp = 2s−1σ−1p2, H = 2(s+ s−1)p. (1.10)

For p2 	 m2
q, s ≈ 1, L ∝ p2 and H ∝ p. Then L ∝ H2 and, because

H = m is the mass (rest energy) of the bound state, we see that

α′ ≡
[
LH−2]

p/mq→∞ = (8σ)−1. (1.11)

It turns out that L is approximately linear in H2 even for quite small
p2, such that L < 1, as shown in figure 1.3. Of course, the classical
approximation is suspect for L not much larger than unity, but the same
phenomenon appears to take place quantum mechanically in nature,
where the lower spin states are also near the straight line fitting the
higher spin states.2

With α′ = 1/8σ, the experimental value α′ ≈ 0.90 GeV−2 gives
√
σ ≈

370 MeV. The effective string model (see e.g. [3] section 10.5) leads
approximately to the same answer: α′ = 1/2πσ, giving

√
σ ≈ 420 MeV.

The string model is perhaps closer to reality if most of the bound-state
energy is in the string-like chromoelectric field, but it should be kept in
mind that both the string model and the effective Hamiltonian give only
an approximate representation of QCD.

1.2 Scalar field

We start our exploration of field theory with the scalar field. Scalar
fields ϕ(x) (x = (x, t), t ≡ x0) are used to describe spinless particles.
Particles appearing elementary on one distance scale may turn out to be
be composite bound states on a smaller distance scale. For example,
protons, pions, etc. appear elementary on the scale of centimeters,
but composed of quarks and gluons on much shorter distance scales.
Similarly, fields may also be elementary or composite. For example, for
the description of pions we may use elementary scalar fields ϕ(x), or
composite scalar fields of the schematic form ψ̄(x)γ5ψ(x), where ψ(x)
and ψ̄(x) are quark fields and γ5 is a Dirac matrix. Such composite fields
can still be approximately represented by elementary ϕ(x), which are
then called effective fields. This is useful for the description of effective
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interactions, which are the result of more fundamental interactions on a
shorter distance scale.
A basic tool in the description is the action S =

∫
dtL, with L the

Lagrangian. For a nonrelativistic particle described by coordinates qk,
k = 1, 2, 3, the Lagrangian has the form kinetic energy minus potential
energy, L = q̇k q̇k/2m − V (q).† For the anharmonic oscillator in three
dimensions the potential has the form V (q) = ω2q2/2 + λ(q2)2/4, q2 ≡
qkqk. In field theory a simple example is the action for the ϕ4 theory,

S =
∫
M

d4xL(x), d4x = dx0 dx1 dx2 dx3, (1.12)

L(x) = 1
2∂tϕ(x)∂tϕ(x)−

1
2∇ϕ(x) ·∇ϕ(x)−

1
2µ

2ϕ(x)2− 1
4λϕ(x)

4, (1.13)

Here M is a domain in space–time, ϕ(x) is a scalar field, L(x) is the
action density or Lagrange function, and λ and µ2 are constants (λ is
dimensionless and µ2 has dimension (mass)2 = (length)−2). Note that
the index x is a continuous analog of the discrete index k: ϕ(x, t)↔ qk(t).
Requiring the action to be stationary under variations δϕ(x) of ϕ(x),

such that δϕ(x) = 0 for x on the boundary of M , leads to the equation
of motion:

δS =
∫
d4x
[
−∂2t ϕ(x) +∇2ϕ(x)− µ2ϕ(x)− λϕ(x)3

]
δϕ(x)

= 0 ⇒ (∂2t −∇2 + µ2)ϕ+ λϕ3 = 0. (1.14)

In the first step we made a partial integration. In classical field theory the
equations of motion are very important (e.g. Maxwell theory). In quan-
tum field theory their importance depends very much on the problem
and method of solution. The action itself comes more to the foreground,
especially in the path-integral description of quantum theory.
Various states of the system can be characterized by the energy H =∫
d3xH. The energy density has the form kinetic energy plus potential

energy, and is given by

H = 1
2 ϕ̇

2 + 1
2 (∇ϕ)

2 + U, (1.15)

U = 1
2µ

2ϕ2 + 1
4λϕ

4. (1.16)

The field configuration with lowest energy is called the ground state. It
has ϕ̇ = ∇ϕ = 0 and minimal U . We shall assume λ > 0, such that H is

† Unless indicated otherwise, summation over repeated indices is implied, q̇k q̇k ≡∑
k q̇k q̇k.
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Fig. 1.4. The energy density for constant fields for µ2 < 0.

bounded from below for all ϕ. From a graph of U(ϕ) (figure 1.4) we see
that the cases µ2 > 0 and µ2 < 0 are qualitatively different:

µ2 > 0: ϕg = 0, Ug = 0;

µ2 < 0: ϕg = ±v, v2 = −µ
2

λ
, Ug = −

1
4
µ2

λ
. (1.17)

So the case µ2 < 0 leads to a doubly degenerate ground state. In this case
the symmetry of S or H under ϕ(x)→ −ϕ(x) is broken, because a non-
zero ϕg is not invariant, and one speaks of spontaneous (or dynamical)
symmetry-breaking.
Small disturbances away from the ground state propagate and dis-

perse in space and time in a characteristic way, which can be found
by linearizing the equation of motion (1.14) around ϕ = ϕg. Writing
ϕ = ϕg + ϕ′ and neglecting O(ϕ′2) gives

(∂2t −∇2 +m2)ϕ′ = 0, (1.18)

m2 = U ′′(ϕg) =
{
µ2, µ2 > 0;
µ2 + 3λv2 = −2µ2, µ2 < 0.

(1.19)

Wavepacket solutions of (1.18) propagate with a group velocity v =
∂ω/∂k, where k is the average wave vector and ω =

√
m2 + k2. In

the quantum theory these wavepackets are interpreted as particles with
energy–momentum (ω,k) and mass m. The particles can scatter with an
interaction strength characterized by the coupling constant λ. For λ = 0
there is no scattering and the field is called ‘free’.



2

Path-integral and lattice regularization

In this chapter we introduce the path-integral method for quantum
theory, make it precise with the lattice regularization and use it to
quantize the scalar field. For a continuum treatment of path integrals in
quantum field theory, see for example [8].

2.1 Path integral in quantum mechanics

To see how the path integral works, consider first a simple system with
one degree of freedom described by the Lagrange function L = L(q, q̇),
or the corresponding Hamilton function H = H(p, q),

L = 1
2mq̇

2 − V (q), H =
p2

2m
+ V (q), (2.1)

where p and q are related by p = ∂L/∂q̇ = mq̇. In the quantum theory p
and q become operators p̂ and q̂ with [q̂, p̂] = i� (we indicate operators
in Hilbert space by a caret ·̂). The evolution in time is described by the
operator

Û(t1, t2) = exp[−iĤ(t1 − t2)/�], (2.2)

with Ĥ the Hamilton operator, Ĥ = H(p̂, q̂). Instead of working with
q-numbers (operators) p̂ and q̂ we can also work with time dependent
c-numbers (commuting numbers) q(t), in the path-integral formalism.
(Later we shall use anti-commuting numbers to incorporate Fermi–Dirac
statistics.) In the coordinate basis |q〉 characterized by

q̂|q〉 = q|q〉, (2.3)

〈q′|q〉 = δ(q′ − q),
∫
dq |q〉〈q| = 1, (2.4)

8
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Fig. 2.1. Illustration of two functions q(t) contributing to the path integral.

we can represent the matrix element of Û(t1, t2) by a path integral

〈q1|Û(t1, t2)|q2〉 =
∫
Dq exp[iS(q)/�]. (2.5)

Here S is the action functional of the system,

S(q) =
∫ t1

t2

dtL(q(t), q̇(t)), (2.6)

and
∫
Dq symbolizes an integration over all functions q(t) such that

q(t1) = q1, q(t2) = q2, (2.7)

as illustrated in figure 2.1. The path integral is a summation over
all ‘paths’ (‘trajectories’, ‘histories’) q(t) with given end points. The
classical path, which satisfies the equation of motion δS(q) = 0, or

∂L

∂q
− ∂

∂t

∂L

∂q̇
= 0, (2.8)

is only one out of infinitely many possible paths. Each path has a ‘weight’
exp(iS/�). If � is relatively small such that the phase exp(iS/�) varies
rapidly over the paths, then a stationary-phase approximation will be
good, in which the classical path and its small neighborhood give the
dominant contributions. The other extreme is when the variation of S/�
is of order one. In the following we shall use again units in which � = 1.
A formal definition of

∫
Dq is given by∫
Dq =

∏
t2<t<t1

∫
dq(t), (2.9)
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i.e. for every t ∈ (t2, t1) we integrate over the domain of q, e.g. −∞ <

q <∞. The definition is formal because the continuous product
∏

t still
has to be defined. We shall give such a definition with the help of a
discretization procedure.

2.2 Regularization by discretization

To define the path integral properly we discretize time in small units a,
writing t = na, q(t) = qn, with n integer. For a smooth function q(t) the
time derivative q̇(t) can be approximated by q̇(t) = (qn+1 − qn)/a, such
that the discretized Lagrange function may be written as†

L(t) =
m

2a2
(qn+1 − qn)2 −

1
2
V (qn+1)−

1
2
V (qn), (2.10)

where we have divided the potential term equally between qn and qn+1.
We define a discretized evolution operator T̂ by its matrix elements as
follows:

〈q1|T̂ |q2〉 = c exp
{
ia

[
m

2a2
(q1 − q2)2 −

1
2
V (q1)−

1
2
V (q2)

]}
, (2.11)

where c is a constant to be specified below. Note that the exponent is
similar to the Lagrange function. The operator T̂ is called the transfer
operator, its matrix elements the transfer matrix. In terms of the transfer
matrix we now give a precise definition of the discretized path integral:

〈q′|Û(t′, t′′)|q′′〉 =
∫
dq1 · · · dqN−1〈q′|T̂ |qN−1〉

× 〈qN−1|T̂ |qN−2〉 · · · 〈q1|T̂ |q′′〉

= c
∫ (∏

c dq
)
exp
[
im

2a
(q′ − qN−1)2

− ia

2
V (q′)− iaV (qN−1) +

im

2a
(qN−1 − qN−2)2

− iaV (qN−2) + · · ·+
im

2a
(q1 − q′′)2 −

ia

2
V (q′′)

]

≡
∫
Dq eiS . (2.12)

Here the discretized action is defined by

S = a
N−1∑
n=0

L(na), (2.13)

† For notational simplicity we shall denote the discretized forms of L, S, . . ., by the
same symbols as their continuum counterparts.
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where qN ≡ q′ and q0 ≡ q′′. In the limit N →∞ this becomes equal to
the continuum action, when we substitute smooth functions q(t). Since
the qn are integrated over on every ‘time slice’ n, such smoothness is not
typically present in the integrand of the path integral (typical paths qn
will look like having a very discontinuous derivative) and a continuum
limit at this stage is formal.
It will now be shown that, with a suitable choice of the constant c,

the transfer operator can be written in the form

T̂ = e−iaV (q̂)/2 e−iap̂2/2m e−iaV (q̂)/2. (2.14)

Taking matrix elements between 〈q1| and |q2〉 we see that this formula
is correct if

〈q1|e−iap̂2/2m|q2〉 = ceim(q1−q2)
2/2a. (2.15)

Inserting eigenstates |p〉 of the momentum operator p̂ using

〈q|p〉 = eipq,
∫
dp

2π
|p〉〈p| = 1, (2.16)

we find that (2.15) is true provided that we choose

c =
√

m

2πia
=
√

m

2πa
e−iπ/4. (2.17)

The transfer operator T̂ is the product of three unitary operators, so
we may write

T̂ = e−iaĤ . (2.18)

This equation defines a Hermitian Hamiltonian operator Ĥ modulo
2π/a. For matrix elements between eigenstates with energy E � 2π/a
the expansion

T̂ = 1− iaĤ +O(a2) (2.19)

leads to the identification

Ĥ =
p̂2

2m
+ V (q̂) +O(a2), (2.20)

in which we recognize the usual Hamilton operator. It should be kept
in mind though that, as an operator equation, the expansion (2.19)
is formal: because p̂2 is an unbounded operator there may be matrix
elements for which the expansion does not converge.
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2.3 Analytic continuation to imaginary time

It is very useful in practice to make an analytic continuation to imaginary
time according to the substitution t → −it. This can be justified if the
potential V (q) is bounded from below, as is the case, for example, for
the anharmonic oscillator

V (q) = 1
2mω

2q2 + 1
4λq

4. (2.21)

Consider the discretized path integral (2.12). The integration over the
variables qn continues to converge if we rotate a in the complex plane
according to

a = |a|e−iϕ, ϕ: 0→ π

2
. (2.22)

The reason is that, for all ϕ ∈ (0, π/2], the real part of the exponent in
(2.12) is negative:

i

|a|e−iϕ
=

1
|a| (− sinϕ+ i cosϕ), −i|a|e

−iϕ = |a|(− sinϕ− i cosϕ).
(2.23)

The result of this analytic continuation in a is that the discretized path
integral takes the form

〈q′|Û�(t′, t′′)|q′′〉 = |c|
∫ (∏

n

|c|dqn

)
eS� ,

S� = −|a|
N−1∑
n=0

[
m

2|a|2 (qn+1 − qn)
2 +

1
2
V (qn+1) +

1
2
V (qn)

]
. (2.24)

Here the subscript � denotes the imaginary-time versions of U and S.
The integrand in the imaginary-time path integral is real and bounded

from above. This makes numerical calculations and theoretical analysis
very much easier. Furthermore, in the generalization to field theory there
is a direct connection to statistical physics, which has led to many fruitful
developments. For most purposes the imaginary-time formulation is
sufficient to extract the relevant physical information such as the energy
spectrum of a theory. If necessary, one may analytically continue back to
real time, by implementing the inverse of the rotation (2.22). (This can
be done only in analytic calculations, since statistical errors in e.g. Monte
Carlo computations have the tendency to blow up upon continuation.)
In the following the subscript � will be dropped and we will redefine
|a| → a, with a positive.
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After transformation to imaginary time the transfer operator takes
the Hermitian form

T̂ = e−aV (q̂)/2 e−ap̂2/2m e−aV (q̂)/2. (2.25)

This is a positive operator, i.e. all its expectation values and hence all
its eigenvalues are positive. We may therefore redefine the Hamiltonian
operator Ĥ according to

T̂ = e−aĤ . (2.26)

A natural object in the imaginary-time formalism is the partition
function

Z = Tr e−Ĥ(t+−t−) =
∫
dq 〈q|e−Ĥ(t+−t−)|q〉 = Tr T̂N , (2.27)

where we think of t+ (t−) as the largest (smallest) time under consid-
eration, with t+ − t− = Na. From quantum statistical mechanics we
recognize that Z is the canonical partition function corresponding to
the temperature

T = (t+ − t−)−1 (2.28)

in units such that Boltzmann’s constant kB = 1. The path-integral
representation of Z is obtained by setting in (2.24) qN = q0 ≡ q

(q′ = q′′ ≡ q) and integrating over q:

Z =
∫
pbc

Dq eS . (2.29)

Here ‘pbc’ indicates the fact that the integration is now over all dis-
cretized functions q(t), t− < t < t+, with ‘periodic boundary conditions’
q(t+) = q(t−).

2.4 Spectrum of the transfer operator

Creation and annihilation operators are familiar from the theory of the
harmonic oscillator. Here we shall use them to derive the eigenvalue
spectrum of the transfer operator of the harmonic oscillator, for which

V (q) = 1
2mω

2q2. (2.30)

For simplicity we shall use units in which a = 1 and m = 1, which may
be obtained by transforming to variables q′ = q/a, p′ = ap, m′ = am,
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and ω′ = aω, then to q′′ = q′
√
m′ and p′′ = p′/

√
m′, such that (omitting

the primes) [p̂, q̂] = −i and

T̂ = e−ω2q̂2/4e−p̂2/2e−ω2q̂2/4. (2.31)

Using the representation q̂ → q, p̂ → −i ∂/∂q or vice-versa one obtains
the relation

T̂

(
p̂

q̂

)
=M

(
p̂

q̂

)
T̂ , (2.32)

where the matrix M is given by

M =
(

1 + 1
2ω

2 i

−i(2 + 1
2ω

2) 12ω
2 1 + 1

2ω
2

)
. (2.33)

We want to find linear combinations κq̂ + λp̂ such that

T̂ (κq̂ + λp̂) = µ(κq̂ + λp̂)T̂ , (2.34)

from which it follows that (κ, λ) have to form an eigenvector ofMT (the
transpose of M) with eigenvalue µ. The eigenvalues µ± of M can be
expressed as

µ± = e±ω̃, cosh ω̃ = 1 + 1
2ω

2, (2.35)

and the linear combinations sought are given by

â = ν[sinh(ω̃q̂) + ip̂],

â† = ν[sinh(ω̃q̂)− ip̂], (2.36)

where ν is a normalization constant. The â and â† are the annihilation
and creation operators for the discretized harmonic oscillator. They
satisfy the usual commutation relations

[â, â†] = 1, [â, â] = [â†, â†] = 0, (2.37)

provided that

ν =
1√

2 sinh ω̃
, (2.38)

and furthermore

T̂ â = eω̃ âT̂ , T̂ â† = e−ω̃ â†T̂ . (2.39)
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The ground state |0〉 with the highest eigenvalue of T̂ satisfies â|0〉 = 0,
from which one finds (using for example the coordinate representation)

〈q|0〉 = e−
1
2 sinh ω̃ q2

,

T̂ |0〉 = e−E0 |0〉,
E0 = 1

2 ω̃. (2.40)

The ground-state energy is E0 = 1
2 ω̃ and using (2.39) one finds that the

excitation energies occur in units of ω̃, for example

T̂ â†|0〉 = e−ω̃ â†T̂ |0〉 = e−(3/2) ω̃â†|0〉. (2.41)

Hence, the energy spectrum is given by

En =
(
n+ 1

2

)
ω̃, (2.42)

which looks familiar, except that ω̃ �= ω.
We now can take the continuum limit a→ 0 in the physical quantities

En. Recalling that ω is really aω, and similarly for ω̃, we see by expanding
(2.35) in powers of a, i.e. cosh(aω̃) = 1 + a2ω̃2/2 + a4ω̃4/24 + · · · =
1 + a2ω2/2, that

ω̃ = ω +O(a2). (2.43)

Note that the corrections are O(a2), which is much better than O(a) as
might be expected naively. This is the reason for the symmetric division
of the potential in (2.11).

2.5 Latticization of the scalar field

We now transcribe these ideas to field theory, taking the scalar field as
the first example. The dynamical variables generalize as

q(t)→ ϕ(x, t) (2.44)

(i.e. there is a q for every x). The coordinate representation is formally
characterized by

ϕ̂(x)|ϕ〉 = ϕ(x)|ϕ〉, (2.45)

|ϕ〉 =
∏
x

|ϕx〉, (2.46)

〈ϕ′|ϕ〉 =
∏
x

δ(ϕ′(x)− ϕ(x)), (2.47)

∏
x

∫ ∞

−∞
dϕ(x) |ϕ〉〈ϕ| = 1. (2.48)
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The evolution operator is given by

〈ϕ1|Û(t1, t2)|ϕ2〉 =
∫
DϕeS(ϕ), (2.49)

where the integral is over all functions ϕ(x, t) with ϕ(x, t1,2) = ϕ1,2(x).
The theory is specified furthermore by the choice of action S. For the
standard ϕ4 model

S(ϕ) = −
∫ t1

t2

dx4

∫
d3x

[
1
2
∂µϕ(x)∂µϕ(x) +

µ2

2
ϕ2(x) +

λ

4
ϕ4(x)

]
,

(2.50)
where x = (x, x4) and x4 = t. Note that in the imaginary-time formalism
the symmetry between space and time is manifest, since the metric
tensor is simply equal to the Kronecker δµν . Consequently, we shall not
distinguish between upper and lower indices µ, ν, . . .. One often speaks of
the Euclidean formalism, since the space–time symmetries of the theory
consist of Euclidean rotations, reflections and translations.
The partition function is given by

Z =
∫
DϕeS(ϕ), (2.51)

where the integral is over all functions periodic in the time direction,
ϕ(x, t+ β) = ϕ(x, t), with β = T−1 the inverse temperature.
The path integral Z will be given a precise definition with the lattice

regularization, by a straightforward generalization of the example of
quantum mechanics with one degree of freedom. Let xµ be restricted
to a four-dimensional hypercubic lattice,

xµ = mµa, mµ = 0, 1, . . ., N − 1, (2.52)

where a is the lattice distance. The size of the hypercubic box is L = Na
and its space–time volume is L4. The notation

∑
x

≡ a4
N−1∑
m1=0

· · ·
N−1∑
m4=0

≡ a4
∑
m

(2.53)

will be used in this book. For smooth functions f(x) we have in the
continuum limit∑

x

f(x)→
∫ L

0

d4x f(x), N →∞, a = L/N → 0, L fixed. (2.54)

We have put x = 0 at the edge of the box. If we want it in the middle
of the box we can choose mµ = −N/2+1,−N/2+2, . . ., N/2. Below we
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shall choose such a labeling for Fourier modes and we shall assume N
to be even in the following.
The scalar field on the lattice is assigned to the sites x, we write ϕx.

The part of the action without derivatives is transcribed to the lattice
as
∑

x(µ
2ϕ2x/2 + λϕ

4
x/4).

Derivatives can be replaced by differences. We shall use the notation

∂µϕx =
1
a
(ϕx+aµ̂ − ϕx), (2.55)

∂′µϕx =
1
a
(ϕx − ϕx−aµ̂), (2.56)

where µ̂ is a unit vector in the µ direction. For smooth functions f(x),

∂µf(x), ∂′µf(x)→
∂

∂xµ
f(x), a→ 0. (2.57)

It is convenient to use periodic boundary conditions (such that the lattice
has no boundary), which are specified by

ϕx+Naµ̂ = ϕx, (2.58)

and, for example,

∂4ϕx,(N−1)a =
1
a
(ϕx,0 − ϕx,(N−1)a). (2.59)

With periodic boundary conditions the derivative operators ∂µ and ∂′µ
are related by ‘partial summation’ (the analog of partial integration)∑

x

ϕ1x ∂µϕ2x = −
∑
x

∂′µϕ1x ϕ2x. (2.60)

In matrix notation,

∂µϕx = (∂µ)xy ϕy, (2.61)

∂′µ is minus the transpose of ∂µ, ∂
′
µ = −∂Tµ :

(∂µ)xy =
1
a
(δx+aµ̂,y − δx,y), (2.62)

(∂′µ)xy =
1
a
(δx,y − δx−aµ̂,y) = −(∂µ)yx = −(∂Tµ )xy. (2.63)

After these preliminaries, the path integral will now be defined by

Z =
∫
DϕeS(ϕ), (2.64)∫

Dϕ =
∏
x

(
c

∫ ∞

−∞

)
dϕx,

∏
x

≡
∏
m

, (2.65)
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S(ϕ) = −
∑
x

(
1
2
∂µϕx∂µϕx +

µ2

2
ϕ2x +

λ

4
ϕ4x

)
, (2.66)

c = a/
√
2π. (2.67)

Note that cϕ is dimensionless. The dimension of ϕ follows from the
requirement that the action S is dimensionless. In d space–time dimen-
sions,

[ϕ] = a−(d−2)/2, c = a(d−2)/2. (2.68)

The factor 1/
√
2π is an inessential convention, chosen such that there

is no additional factor in the expression for the transfer operator (2.74)
below, which would lead to an additional constant in the Hamiltonian
(2.80).
The lattice action was chosen such that for smooth functions f(x),

S(f) → Scont(f) in the classical continuum limit a → 0. However, it is
useful to keep in mind that typical field configurations ϕx contributing to
the path integral are not smooth at all on the lattice scale. The previous
sentence is meant in the following sense. The factor Z−1 expS(ϕ) can be
interpreted as a normalized probability distribution for an ensemble of
field configurations ϕx. Drawing a typical field configuration ϕ from
this ensemble, e.g. one generated by a computer with some Monte
Carlo algorithm, one finds that it varies rather wildly from site to site
on the lattice. This has the consequence that different discretizations
(e.g. different discrete differentiation schemes) may lead to different
answers for certain properties, although this should not be the case for
physically observable properties. The discussion of continuum behavior
in the quantum theory is a delicate matter, which involves concepts like
renormalization, scaling and universality.

2.6 Transfer operator for the scalar field

The derivation of the transfer operator for the scalar field on the lattice
follows the steps made earlier in the example with one degree of freedom.
For later use we generalize to different lattice spacings for time and space,
at and a, respectively. We use the notation x4 = t = nat, ϕx = ϕn,x,
with n = 0, 1, . . ., N−1 and ϕN,x = ϕ0,x. Then the action can be written
as

S(ϕ) = −at
∑
n

∑
x

1
2a2t

(ϕn+1,x − ϕn,x)2 − at
∑
n

V (ϕn), (2.69)
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V (ϕn) =
∑
x


1
2

3∑
j=1

∂jϕn,x∂jϕn,x +
µ2

2
ϕ2n,x +

λ

4
ϕ4n,x


. (2.70)

The transfer operator T̂ is defined by its matrix elements

〈ϕn+1|T̂ |ϕn〉 = cN
3
exp

[
−at

∑
x

1
2a2t

(ϕn+1,x − ϕn,x)2
]

× exp
[
−at

1
2
(V (ϕn+1) + V (ϕn))

]
, (2.71)

such that

Z =

(∏
x

∫
dϕx

)
〈ϕN |T̂ |ϕN−1〉 · · · 〈ϕ1|T̂ |ϕ0〉 (2.72)

= Tr T̂N . (2.73)

The transfer operator T̂ can be written in the form

T̂ = exp
[
−at

1
2
V (ϕ̂)

]
exp

[
−at

1
2

∑
x

π̂2x

]
exp
[
−at

1
2
V (ϕ̂)

]
, (2.74)

where π̂x is the canonical conjugate operator of ϕ̂x, with the property

[ϕ̂x, π̂y] = ia−3δx,y. (2.75)

To check (2.74) we take matrix elements between |ϕn〉 and 〈ϕn+1| and
compare with (2.71). Using

e−at
1
2V (ϕ̂)|ϕn〉 = e−at

1
2V (ϕn)|ϕn〉, (2.76)

we see that (2.74) is correct provided that

〈ϕn+1|e−at
1
2

∑
x π̂2

x |ϕn〉 = cN
3
exp

[
−at

∑
x

(ϕn+1,x − ϕn,x)2 /2a2t

]
.

(2.77)
This relation is just a product over x of relations of the one-degree-of-
freedom type

〈q1|e−p̂2/2ξ|q2〉 =
√

ξ

2π
e−ξ(q1−q2)

2/2, (2.78)

with the identification, for given x, q = aϕ, p̂ = a2π̂ → −i ∂/∂q, and
|ϕ〉 =

√
a|q〉 (such that 〈ϕ′|ϕ〉 = a〈q′|q〉 = aδ(q′ − q) = δ(ϕ′ − ϕ)). It

follows that

c = a

√
ξ

2π
, ξ =

a

at
. (2.79)
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Fig. 2.2. Shortest wave length of a lattice field.

Making the formal continuous-time limit by letting at → 0 and ex-
panding T̂ = 1−atĤ+ · · ·, we find a conventional-looking Hamiltonian1
on a spatial lattice,

Ĥ =
∑
x

(
1
2 π̂

2
x +

1
2∂jϕ̂x∂jϕ̂x + 1

2µ
2ϕ̂2x +

1
4λϕ̂

4
x

)
+O(a2). (2.80)

2.7 Fourier transformation on the lattice

We record now some frequently used formulas involving the Fourier
transform. The usual plane waves in a finite volume with periodic
boundary conditions are given by

eipx, pµ = nµ
2π
L
, (2.81)

where the nµ are integers. We want to use these functions for (Fourier)
transformations of variables. On the lattice the xµ are restricted to xµ =
mµa, mµ = 0, . . ., N − 1, L = Na. There should not be more pµ than
xµ; we take

nµ = −N/2 + 1,−N/2 + 2, . . ., N/2. (2.82)

Indeed, the shortest wave length and largest wave vector are given by
(cf. figure 2.2)

λmin = 2a, pmax =
π

a
=
N

2
2π
L
. (2.83)




