From the authors of The Evolution and Extinction of the Dinosaurs comes a new textbook designed to excite undergraduates about science by using dinosaurs to illustrate and discuss geology, natural history, and evolution. Emphasizing the logic of science over facts and details, the fundamental concepts of dinosaurs – origins – diversity – behavior – extinction – are conveyed in concise, lively text with exceptional and unique illustrations. Hypothesis testing and scientific concepts drive the strong narrative. Students are introduced to novel and revolutionary ideas on the natural history of dinosaurs; ideas that will likely change their perception of the biota and their place in it. Fastovsky and Weishampel root the text in the common language of modern evolutionary biology – phylogenetic systematics – requiring students to assess data critically, like all practicing scientists.
Gideon Mantell (1790–1852), the “father” of modern dinosaur paleontology.
Contents

Why a natural history of dinosaurs? ix
  To the student ix
  To the instructor x
Dedication xiii

Part I: Reaching back in time 1

1 To catch a dinosaur 3
  Chapter objectives 3
  Tales of dinosaurs 4
  Fossils 4
  Collecting 9
  Summary 16
  Selected readings 17
  Topic questions 17

2 Dinosaur days 18
  Chapter objectives 18
  When did dinosaurs live and how do we know? 20
  Continents and climates 24
  Climates during the time of the dinosaurs 27
  Summary 29
  Appendix 2.1: Chemistry quick ’n dirty 29
  Selected readings 30
  Topic questions 31

3 Who’s related to whom – and how do we know? 32
  Chapter objectives 32
  Who are you? 34
  Evolution 34
  Phylogenetic systematics – the reconstruction of phylogeny 36
    Box 3.1: Wristwatches: when is a watch a watch? 42
  Science and testing hypotheses 45

  Summary 45
  Appendix 3.1: What is “evolution”? 46
  Selected readings 48
  Topic questions 48

4 Who are the dinosaurs? 51
  Chapter objectives 51
  Finding the history of life 52
  In the beginning 52
  Tetrapoda 55
    Box 4.1: Fish and chips 58
    Box 4.2: What, if anything, is a “reptile”? 62
  Diapsida 63
  Dinosaurs 65
  Origins 67
    Box 4.3: Stance: it’s both who you are and what you do 68
  Ornithischia and Saurischia 70
  Summary 71
  Selected readings 72
  Topic questions 73

Part II: Ornithischia: armored, horned, and duck-billed dinosaurs 75
  What makes an ornithischian an ornithischian? 76
  Chew on this! 77
  Ornithischia: the big picture 79
  Selected readings 83

5 Thyreophorans: the armor-bearers 85
  Chapter objectives 85
  Thyreophora 86
  Eurypoda: Stegosauria – hot plates 87
    Box 5.1: The poetry of dinosaurs 92
Contents

Box 5.2: Dino brains 93
Eurypoda: Ankylosauria – mass and gas 95
The evolution of Thyreophora 102
Summary 105
Selected readings 106
Topic questions 107

6 Marginocephalia: bumps, bosses, and beaks 108
Chapter objectives 109
Marginocephalia 110
Marginocephalia: Pachycephalosauria – In Domes We Trust 110
The evolution of Pachycephalosauria 117
Marginocephalia: Ceratopsia – horns and all the frills 118
The evolution of Ceratopsia 128
Summary 130
Selected readings 132
Topic questions 133

7 Ornithopoda: the tuskers, antelopes, and “mighty ducks” of the Mesozoic 135
Chapter objectives 135
Ornithopoda 136
Box 7.1: Hypotheses that didn’t float 139
The evolution of Ornithopoda 149
Summary 152
Selected readings 152
Topic questions 153

Part III: Saurischia: meat, might, and magnitude 155

Saurischia: the big picture 156
Selected readings 159

8 Sauropodomorpha: the big, the bizarre, and the majestic 161
Chapter objectives 161
Sauropodomorpha 162

Prosauroidea 163
Sauropoda 165
Box 8.1: Every breath you take 172
The evolution of Sauropodomorpha 175
Box 8.2: The recapititation of “Brontosaurus” 179
Summary 183
Selected readings 184
Topic questions 184

9 Theropoda I: nature red in tooth and claw 187
Chapter objectives 187
Theropoda 188
Theropod lives and lifestyles 189
Box 9.1: Triceratops spoils or spoiled
Triceratops? 202
The evolution of Theropoda 205
Summary 209
Selected readings 209
Topic questions 211

10 Theropoda II: the origin of birds 213
Chapter objectives 213
Birds 214
Archaeopteryx and the ancestry of living birds 217
Box 10.1: Plus ça change . . . 225
Feathers without flight 226
Summary 231
Selected readings 232
Topic questions 233

11 Theropoda III: early birds 235
Chapter objectives 235
Mesozoic birds 236
Evolution of Aves 240
Box 11.1: Molecular evolution and the origin of Aves 241
Summary 243
Selected readings 244
Topic questions 244
Part IV: Endothermy, endemism, and extinction 247

12 Dinosaur thermoregulation: some like it hot 248
   Chapter objectives 249
   The way they were 250
   Temperature talk 250
   Dinosaur endothermy: the evidence 250
      Box 12.1: The “skinny” on metabolism 251
      Box 12.2: Warm-bloodedness: to have and to have hot 252
      Box 12.3: In the tracks of dinosaurs 254
      Box 12.4: Dinosaur smarts 256
      Box 12.5: Weighing in 263
   Summary 267
   Selected readings 268
   Topic questions 269

13 The flowering of the Mesozoic 271
   Chapter objectives 271
   Dinosaurs in the Mesozoic Era 274
      Box 13.1: The shape of tetrapod diversity 278
      Box 13.2: Counting dinosaurs 280
   Plants and dinosaurian herbivores 282
      Box 13.3: Dinosaurs invent flowering plants 287
   Summary 287
   Selected readings 288
   Topic questions 289

14 A history of paleontology through ideas 291
   Chapter objectives 291
   The idea of ideas 292
   In the beginning 292
      Box 14.1: Indiana Jones and the Central Asiatic Expedition of the American Museum of Natural History 293
   The nineteenth century through the mid-twentieth century 295
      Box 14.2: Sir Richard Owen: brilliance and darkness 296
   Box 14.3: Dinosaur wars in the nineteenth century: boxer versus puncher 298
   Box 14.4: Louis Dollo and the beasts of Bernissart 301
   The second part of the twentieth century to today 303
      Box 14.5: Rollin’ on the river 304
      Box 14.6: “Mr Bones” 306
      Box 14.7: Tendaguru! 307
      Box 14.8: Baron Franz von Nopcsa: nationalism, Transylvanian dinosaurs, and espionage 309
   Summary 315
      Box 14.9: Young Turks and old turkeys 316
   Selected readings 318
   Topic questions 319

15 The Cretaceous–Tertiary extinction: the frill is gone 321
   Chapter objectives 321
   How important were the deaths of a few dinosaurs? 322
   Geological record of the latest Cretaceous 322
   Biological record of the latest Cretaceous 327
      Box 15.1: Extinction 329
      Box 15.2: Dinosaurs: all wrong for mass extinctions 335
   Extinction hypotheses 336
      Box 15.3: The real reason the dinosaurs became extinct 340
   Summary 342
   Selected readings 343
   Topic questions 344

Glossary 345
Figure credits 361
Index of subjects 363
Index of genera 374
Why a natural history of dinosaurs?

To the student

*Dinosaurs: A Concise Natural History* has been written to introduce you to dinosaurs, amazing creatures that lived millions of years before there were humans. Along with acquainting you with these magnificent beasts, reading this book will give you insights into natural history, evolution, and the ways that scientists study Earth history.

What were dinosaurs like? Did they travel in herds? What were the horns for? Did the mothers take care of their babies? Was *T. rex* really the most fearsome carnivore of all time? Were they covered with feathers? How fast could brontosaurus run? Why did dinosaurs get so big? Along with getting answers to these and many other questions, you’ll also meet legendary and charismatic dinosaur hunters (including the models for Indiana Jones and Jurassic Park’s Dr Alan Grant) whose expeditions have helped to reveal the dinosaurs’ stories from fossils and other fragmental clues left behind in the rocks. *Dinosaurs* will help you think like a scientist, while your knowledge of dinosaurs, natural history, and science grows with each chapter you read.

The book is written by authors that are active dinosaur researchers, with between them more than 45 years of experience teaching. It is illustrated by John Sibbick, one of the world’s most famous dinosaur illustrators.

David Fastovsky is Professor of Geosciences at the University of Rhode Island. His interest in dinosaurs started as a child when he read about Roy Chapman Andrews in the Gobi Desert (a story that, naturally enough, graces the pages of the book you are holding). Dinosaurs won out years later when he chose paleontology over a career in music. Fastovsky has had many of his own adventures in far-flung parts of the world, including Argentina, Mexico, the western USA and Canada, and Mongolia. He is known as a dynamic teacher as well as a respected researcher with a focus on the extinction of the dinosaurs, as well as the environments in which they roamed. He has made several television documentary appearances, and was a recipient of the Distinguished Service Award by the Geological Society of America in 2006.

David B. Weishampel is Professor in the Center for Functional Anatomy and Evolution at The Johns Hopkins University, School of Medicine. Recipient of two teaching awards, Weishampel teaches human anatomy, evolutionary biology, cladistics and, of course, a course on dinosaurs. His research focuses on dinosaur evolution and how dinosaurs function, and he is particularly interested in herbivorous dinosaurs and the dinosaur record of eastern Europe and Mongolia. He is the senior editor of the immensely well-received *The Dinosaurs*, and has written or co-written four books and many scholarly articles. Weishampel has contributed to a number of popular publications as well, including acting as consultant to Michael Crichton in the writing of *The Lost World*.

John Sibbick has over 25 years of illustration experience working on subjects ranging from mythology to natural history and is probably best known for his depictions of prehistoric
Why a natural history of dinosaurs?

In the first stage of any commission he takes the fossil evidence and consults with specialists in their field and works out a number of sketches to build up an overall picture of structure, surface detail, and behavior. From his base in England he has provided images for books, popular magazines such as the *National Geographic*, and television documentaries, as well as museum exhibits and one-man shows of original artwork. For this book he has provided 223 pieces of original art.

To the instructor

*Dinosaurs: A Concise Natural History* is a new textbook that uses a particularly attractive vehicle – dinosaurs – to introduce students in the early part of their college careers to the logic of scientific inquiry, and to concepts in natural history and evolutionary biology. The perspective and methods introduced through dinosaurs have a relevance that extends far beyond the dinosaurs, engendering in students scientific logic and critical thinking. The text is a fresh, completely rewritten version of our popular *The Evolution and Extinction of the Dinosaurs* (2005), with enhanced accessibility to students and added features to facilitate its utility for teaching.

A unique conceptual approach

Dino factoids – names, dates, places, and features – are available in zillions of books and websites. We depart from a “Who? What? Where?” approach to dinosaurs, instead building a broad understanding of the natural sciences through the power of competing scientific hypotheses.

Unique among dinosaur textbooks, *Dinosaurs* is rooted in phylogenetic systematics. This follows current practice in evolutionary biology, and allows students to understand dinosaurs as professional paleontologists do. The cladograms used in this book have been uniquely drawn in a way that highlights the key hierarchical relationships they depict, ensuring that both the methods and conclusions of phylogenetic systematics remain accessible.

Long experience shows that students come to dinosaur courses with many preconceptions about the natural world; *Dinosaurs* asks them to think in new and revolutionary ways. For example, one of the great advances to come out of the past 20 years of dinosaur research is the recognition that *living birds are dinosaurs*. This somewhat startling conclusion leads to a couple of other counter-intuitive conclusions:

1. Birds are reptiles.
2. Dinosaurs didn’t go extinct.

In this and in many other ways, our book will challenge students to reconsider their ideas about science and about their world.

Part I introduces the fundamental intellectual tools of the trade. Chapters 1 and 2 treat geology, the geological time scale, fossils, collecting, and what happens after the bones leave the field. The third chapter, a carefully crafted introduction to the logic of phylogenetic systematics, uses familiar and common examples to acquaint students with the method. Chapter 4 takes students from basal Vertebrata to the two great groups of dinosaurs Ornithischia and Saurischia.

Parts II and III cover, respectively, Ornithischia and Saurischia. The chapters within Parts II and III cover the major groups within Dinosauria, treating them in terms of phylog-
eny and evolution, behavior, and lifestyle. Ornithischia comes before Saurischia to reinforce the fundamental point that, on the cladogram, the ordering of Ornithischia and Saurischia within a monophyletic Dinosauria makes no difference.

The phylogenetically most complex of dinosaur groups, Theropoda, is treated last in Part III, when students are best prepared to understand it. Three chapters cover the group: one for non-avian theropods, one on the evolution of birds from non-avian theropods, and one on the Mesozoic evolution of birds, since it was during the Mesozoic that birds acquired their modern form.

Part IV covers the aspects of the paleobiology of Dinosauria, from their metabolism, to the great rhythms that drove their evolution, to their extinction. A special chapter is devoted to the history of dinosaur paleontology. Although commonly introduced at the beginning of dinosaur books as a litany of names, dates, and discoveries, our history chapter—a history of ideas—is placed toward the end, so the thinking that currently drives the field can be understood in context. Yet we would cheat our readers if we left out accounts of the dinosaur hunters, whose colorful personalities and legendary exploits make up the lore of dinosaur paleontology; so we’ve included many of their stories as well.

Features

*Dinosaurs* is designed to help instructors to teach and to help students learn:

- The book is richly illustrated with new, especially commissioned, art by John Sibbick, one of the world’s foremost illustrators of dinosaurs. These images are exciting for the student to learn from and they effectively highlight and reinforce the concepts in the text. Many pages are also graced by research photographs, generously contributed by professional paleontologists.

- The chapters are arranged so that they present the material in order of increasing complexity and sophistication, building the confidence of the student early on, and extending the sophistication of their learning gradually through the book.

- The tone of the text is light, lively, and readable, engaging the student in the science, and dispelling the apprehension many students experience when they pick up a science textbook.

- “Objectives” at the beginning of each chapter help students to grasp chapter goals; “Summaries” at the end highlight key points.

- Boxes scattered throughout the book present a range of ancillary topics, from dinosaur poetry, to extinction cartoons, to how bird lungs work, to colorful accounts of unconventional, outlandish, and extraordinary people, places, and stories.

- A comprehensive series of “Topic Questions,” to be used as study guides, are located at the end of each chapter. The questions probe successively deeper levels of understanding, and students who can answer all of the “Topic Questions” will have a good grasp of the material. Variants of these questions can serve as excellent templates for examination questions.

- A Glossary ties definitions of key terms into the page numbers where the term is used.

- There are two indices: an Index of subjects and an Index of genera that includes English translations of all dinosaur names.
Why a natural history of dinosaurs?

- Appendices are included in certain chapters to introduce material that students may need in order to understand chapter concepts, such as the chemistry necessary to understand radioactive decay, and the basic principles of evolution by natural selection.

Online resources to help you deliver your dinosaur course include:

- Electronic files of the figures and images within the book.
- Lecture slides in PowerPoint with text and figures to help you to structure your course.
- Solutions to the questions in the text for instructors.

Acknowledgements

We owe a real debt of gratitude to the whole staff of Cambridge University Press who produced this book. In particular, we especially thank Joanna Endell-Cooper and Sandi Irvine for their thoughtful editing and careful consideration of the totality of this book; the final product is assuredly far better for their efforts. Special thanks are also due to our two patient editors, Katrina Halliday, who initiated the project, and Catherine Flack, who ended up with the lion’s share of the heavy lifting for it. Their contributions made this book possible.
Dedication

To Lesley, Naomi, and Marieke, who make life as rich as it is. To Poor Robert, because…

To Sarah and Amy, for whom basketball and flamenco are even better than dinosaurs. Thanks for showing your dad that there are things other than dinosaurs!