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Different formulations of quantum mechanics

This book is dedicated to the non-Hermitian formalism of quantum mechanics.
In this chapter we wish to give the motivation and the rational for developing
a non-Hermitian formalism to quantum mechanics. Therefore this chapter will
not explain how non-Hermitian calculations are carried out or in what way the
non-Hermitian formalism is analogous to the standard (Hermitian) formalism of
quantum mechanics. It is important to emphasize that there is no (known) transfor-
mation which enables one to map results which were obtained using one formalism
to the other one. Yet, the same physical results should be obtained by studying the
same phenomenon using the two formalisms. If this is the case, why should one
bother to develop an alternative formalism to the standard Hermitian formalism of
quantum mechanics?

There are several reasons for doing this and here we shall focus on five of those
reasons.

(1) There are phenomena which can be explained in a straightforward fashion using the
non-Hermitian formalism but are very hard and often impossible to explain within the
framework of the standard (Hermitian) formalism of quantum mechanics.
In particular in Chapter 9 we will describe several physical phenomena which are
associated with the self-orthogonality where two or more degenerate resonance states
are coalesced.

(2) There are physical phenomena which one might not immediately associate with quan-
tum behavior where the quantum language can be used to describe the physics.
The studied problem may be, for example, in systems described in terms of classi-
cal statistical mechanics, diffusion in biological systems, or propagation of light in
waveguides (WG). In such cases the Hamiltonians are not Hermitian since the system
at hand is open to interaction with its environment. For example, when light is propa-
gated in an optical WG within the paraxial approximation the scalar Maxwell equation
is like the time-dependent Schrödinger equation with a time-independent Hamilto-
nian. The square of the index of refraction (with a minus sign) serves as a potential
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2 Different formulations of quantum mechanics

energy term in quantum mechanics. The propagation axis Z serves as time in quantum
mechanics. The imaginary part of the complex index of refraction indicates the amount
of absorption loss of the propagated light when it passes through the wave guide. The
complex potential renders the Hamiltonian non-Hermitian and therefore such systems
can be only studied within the framework of the non-Hermitian formalism discussed
here.

(3) Simplification of numerical propagation of wave packets in time.
The propagation of matter waves by the Schrödinger equation and the propagation of
light in waveguides in the paraxial approximation are associated with two different
physical phenomena but they obey the same mathematical equation. The numerical
propagation of wave packets is much more simple when taken within the framework
of the non-Hermitian formalism of quantum mechanics rather than in the standard
(Hermitian) formalism. This is due to the inclusion of a reflection-free complex absorb-
ing potential (RF-CAP) in the Hamiltonian which attains non-zero values only in the
non-interacting region in the coordinate space where the physical potentials vanish.
This approach enables one to avoid the artificial reflections from the edge of the numer-
ical grid when a finite number of grid points (or a finite number of basis functions)
are used to describe a propagated wave-packet. By adding the complex non-Hermitian
potential to the Hamiltonian one can carry out numerical calculations using a finite
number of grid points or a finite number of basis functions (after all, our computers
are finite) and have a numerically exact propagated wave-packet in the region where
the RF-CAPs vanish. By numerically exact, we mean that the wave-packet which is
obtained by introducing a RF-CAP into the calculations, is exactly as the wave-packet
which would be calculated (if it were possible) by computers which are infinite (i.e.
infinite capacity, memory and computational power). The derivation of RF-CAPs by
carrying out a smooth exterior scaling transformation of the spatial coordinates is
presented in Chapter 5.

(4) Another numerical example for the advantage of the use of the non-Hermitian formalism
over the standard one is when the dynamics of a given system can be described by a
small number of resonance states.
Often it is enough to describe the dynamical process and to calculate all possible mea-
surable quantities just from a single resonance state. See, for example, in Chapter 8, the
calculations of the high-harmonic-generation (HHG) spectra (i.e. the emitted high fre-
quency radiation) and the calculations of the above-threshold-ionization (ATI) spectra
from a single quasi-energy photo-induced resonance state when atoms or molecules
interact with strong laser fields.

(5) Within the framework of the non-Hermitian formalism of quantum mechanics, one can
get a better understanding of different methods and theories developed in the standard
(Hermitian) formalism of quantum mechanics.
The first example is the Rayleigh–Schrödinger perturbation theory where the full
Hamiltonian is defined as Ĥ = Ĥ0 + λV̂ , where λ is the perturbation strength parame-
ter. The interesting non-trivial cases occur when Ĥ0 and V̂ do not commute. The radius
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1.1 Hermitian operators: a brief review 3

of convergence of the perturbation expansion for the eigenvalues and the eigenfunctions
is |λbp|, where λbp is a complex branch point associated with a self-orthogonal state
where several (usually only two) eigenfunctions of the full Hamiltonian coalesce. The
nature of these branch points and a method to calculate them and thereby to determine
the radius of convergence of a perturbational series expansion of the eigenvalues and
eigenfunctions is described in Chapter 9. Another example is the calculations of the
poles of the scattering matrix for many-body problems. Within the framework of the
standard formalism of quantum mechanics it is very difficult, if not impossible (by
the available computational facilities), to calculate the poles of the scattering matrix
for many-electron atomic or molecular systems. This is particularly true when con-
sidering the electronic correlations which are missing in mean field approximations
(e.g. Hartree Fock calculations for fermions and Hartree calculations for bosons).
In the non-Hermitian formalism the poles of the scattering matrix can be directly
obtained by calculating the complex eigenvalues of the non-Hermitian Hamilto-
nian, as described in Chapters 4 and 5, for time-independent and time-dependent
Hamiltonians.

1.1 Hermitian operators: a brief review

A fundamental postulate in standard quantum mechanics is that any measurable
dynamical quantity is represented by a Hermitian operator. This postulate results
from another postulate in quantum mechanics which states that the quantities we
observe are the eigenvalues of operators which represent the measurable quantities.
Since measurable quantities such as the momentum of free particles or the energy of
stable atoms and molecules are real quantities, the operators which represent them
should be Hermitian operators. For example, the x-component of the momentum,
p̂x , is represented by −ih̄∂/∂x, the Hamiltonian is represented by Ĥ , etc. However,
these operators, Ô, which represent measurable dynamical quantities, are Hermi-
tian provided that they operate on functions which belong to the Hilbert space
H of square integrable functions such that if f and g are square integrable func-
tions, f, g ∈ L2(R) = H, or have asymptotes which are periodic functions, they
satisfy

〈f |Ĥ |g〉 = 〈g|Ĥ |f 〉∗ . (1.1)

As a consequence of this postulate there are a series of theorems that serve mile-
stones in the formalism of quantum mechanics. The eigenvalues of Hermitian
operators are real and expectation values of any measurable quantity are real. The
eigenfunctions of Hermitian operators can serve as a complete set in the series
expansion of any wavepacket (including time-dependent wavepackets) that repre-
sent the system under study. That is, |�〉 = ∑

j cj |j 〉, where Ô|j 〉 = oj |j 〉. The
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4 Different formulations of quantum mechanics

absolute value of any one of the expansion coefficients, |cj |2, is the probability of
measuring a specific quantity, oj .

Exercise 1.1

Since the standard formulation of quantum mechanics defines physical operators as
Hermitian we have to stress here that the Hermitian property of an operator is
heavily dependent on the basis set which is used to represent a dynamical variable
by matrices of infinite order. It is commonly assumed that these matrices obey the
usual laws valid for finite matrices. However, it is obvious that this is not necessarily
always true. Show that p̂3

x = (−id/dx)3 ≡ id3
x is not Hermitian when particle-in-a-box

eigenfunctions, {φn(x)}n=1,2,..., are used as a basis set. Associate it with the fact that
PP2 	= P2P, where P is an infinite order Hermitian matrix that represents the momentum
operator for a particle in a box, and its square P2 is well defined and diagonal.

We should emphasize here that the kind of non-Hermiticity of an operator
demonstrated in Ex. 1.1 which is associated with the momentum operator is not
the type which we commonly discuss in this book. All the non-Hermitian prop-
erties of the Hamiltonian which will be discussed in this book result from the
potential energy term in the Hamiltonian. There are two different types of local
potential energy term which render the Hamiltonian of the studied system non-
Hermitian. The first type are potentials that in standard (Hermitian) formalism of
quantum mechanics support a continuous spectrum. The second type of potentials
are complex local potentials.

1.2 Non-Hermitian potentials which support a continuous spectrum

The potentials of open systems describe ionization or dissociation or any other
phenomenon where the system under study breaks up into freely moving non-
interacting subsystems. When a system is in a metastable state (so called a res-
onance state) it has enough energy to break up into several subsystems. A given
system can arrive at a metastable resonance state in a full collision process where
the target and the projectiles form an “activated complex” as they collide, which
can be considered as a system that has the energy to break up into subsystems.
A more natural way to create a system in a metastable resonance state is in a
half collision process. In half collision processes the energy can be pumped into
the system by many different ways. For example, by applying a static field, by
exposing the system under study to weak or strong lasers, by using accelerators,
or by heating. The systems can be, for example: nuclei, atoms, molecules, solids,
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1.2 Non-Hermitian potentials which support a continuous spectrum 5

nano-structured materials, and condensates. The subsystems might contain elemen-
tary particles and/or neutral or negative/positive charged atomic or molecular ions.
Systems where dynamical behavior is controlled by resonances can be, for example,
as small as protonium or helium atoms or as large as proteins.

Different situations where energy is pumped into a system giving it enough
energy to break up into subsystems are described in the next chapter. We focus
in the next chapter on resonance phenomena which are associated with sys-
tems that do not break up immediately into subsystems although they have the
energy to do so, but rather remain stable for long periods of time. As time passes
the outgoing subsystems reach a detector where the energy and momenta can
be measured precisely. Since the momenta are eigenvalues of the momentum
operator it seems that the detectors measure the wave-vectors of plane waves,
{kj }j=1,2,..., where the measured momentum vector of the j -th particle/subsystem
is given by h̄kj . Therefore, it is very natural to associate the metastable res-
onance states of the system with stationary solutions of the time-independent
Schrödinger equation with outgoing asymptotes rather than with non-stationary
wavepacket solutions of the time-dependent Schrödinger equation. We will show
in the following chapters that, even when the system interacts with time peri-
odic electromagnetic fields, resonances can be associated with quasi-stationary
solutions.

Exercise 1.2

Often in experiments the detectors measure the momenta of the outgoing particles/
subsystems. Because of the uncertainty relation in quantum mechanics we know that
it is impossible to measure precisely both the positions and the momenta of the out-
going particles/subsystems. However, it is possible to build detectors (antennas) that
measure precisely the momenta of the outgoing particles/subsystems. Is there violation
of the uncertainty “principle” since we know precisely the location of the antenna that
measures the momenta of the outgoing particles/subsystems?

Here we are coming to a critical point in our discussion of the resonance phe-
nomena. By imposing outgoing boundary conditions on the eigenfunctions of the
time-independent Hamiltonian (we will extend this approach also to the time-
dependent Hamiltonian in Chapter 4) two kinds of solutions are obtained. The first
type of solution is the bound states. The second type of solution is the resonance
states which are associated with complex eigenvalues and eigenfunctions which
are not in the Hermitian sector of the domain of the physical Hamiltonian.
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6 Different formulations of quantum mechanics
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Figure 1.1 The second longest living resonance state for a spherical potential,
V (r) = (r2/2 − 0.8) exp(−0.1r2), obtained by carrying out three different types
of calculation. The model potential is plotted using a full dark line.

These complex resonance eigenvalues are associated with the complex poles of
the scattering matrix derived within the framework of the standard (Hermitian)
formalism of quantum mechanics. We will explain the properties of the resonance
complex eigenvalues and eigenfunctions in detail in Chapters 4–6. As we will
show in this book, the use of the resonance states as a basis set in describing full
collision and half collision processes has both conceptual and numerical advan-
tages over the standard approach. First, in many cases the dynamical process can
be described as a linear combination of a small number of resonance eigenstates
(i.e. solutions of the time-independent Schrödinger equation obtained by impos-
ing outgoing boundary conditions). Often only one resonance state dominates the
dynamics. In such cases, even without doing any computations one can find out
what the potential parameters are which should be varied in order to control the
dynamics. The variation of potential parameters can be done by selecting different
type of atomic, molecular or mesoscopic systems, or by varying the structure of
the system as in the case of quantum dots, quantum wells and waveguides or by
varying the laser parameters when photo-induced dynamics is under study. For
instance, it is quite difficult and often impossible to explain the results of experi-
ments where the electronic and nuclear coordinates are strongly coupled to one
another, such as in the case of scattering of electrons from molecules or in the
scattering of anti-protons from atoms. As we will show in Chapters 4–9, within the
framework of the non-Hermitian formalism of quantum mechanics we can explain
the results of such experiments.

In order to illustrate the advantages in using non-Hermitian quantum mechanics
for studying the resonance phenomenon, we show here in Fig. 1.1 the metastable
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1.2 Non-Hermitian potentials which support a continuous spectrum 7

resonance states for a particle in a spherically symmetric potential barrier
given by

V (r) = (r2/2 − 0.8)e−0.1r2 {0 ≤ r ≤ ∞} . (1.2)

Note that the cross section of this potential in any given direction supports
two barriers separated by a potential well. The s-waves eigenfunctions which are
associated with the resonance phenomenon were calculated numerically by three
different approaches: (1) using the Hermitian formalism of quantum mechanics;
(2) using the non-Hermitian formalism by imposing outgoing boundary conditions
(BC) on the solutions of the time-independent Schrödinger equation; (3) using
the complex scaling method (CS) where the Hamiltonian becomes non-Hermitian
due to rotation of the coordinate into the complex plane, i.e., r → r exp(+iθ ). In
this method we calculate the square-integrable eigenfunctions which decay to zero
as r → ∞. These functions are associated with complex eigenvalues which are
θ -independent (provided that θ gets to sufficiently large values). In this case the
Hamiltonian is non-Hermitian due to the use of the complex scaling technique and
not because of the requirement of outgoing boundary conditions.

The non-Hermitian methods for the calculations of resonance energies and wave-
functions will be described briefly in this chapter and in greater detail in Chapters
4–5. The resonance phenomenon in this case is related to the fact that a wavepacket
which is initially localized inside the potential well remains localized for quite
a long period of time. The different types of physical resonance phenomenon in
nature are described in detail in the next chapter since resonances are one of the
most interesting phenomena in physical sciences.

We now closely examine the manifestation of the resonance phenomenon in
each of the approaches described above.

(1) In the first approach we calculated the s-wave continuum eigenfunctions of the Hamil-
tonian Ĥ = −0.5∂2

r + (r2/2 − 0.8) exp(−0.1r2) within the framework of the standard
formalism of quantum mechanics. In Figs. 1.1 and 1.2 we show the results obtained
by the Hermitian calculations for E = Re(Eres), where Eres are complex poles of the
scattering matrix. To avoid the relatively complicated calculations of the scattering
matrix (we discuss this approach in Chapter 3) we first evaluated the poles of the
scattering matrix using the non-Hermitian formalism of quantum mechanics. Knowing
the relevant values we proceeded to calculate the relevant continuum functions for two
energies. One case is when E = Re(Eres

1 ) = 1.784582 au and the other case is when
E = Re(Eres

2 ) = 2.455696 au. As one can see from the results presented in Fig. 1.1
for the first case, the Hermitian continuum function is localized inside the potential
well and has only very weak oscillations outside the potential barrier. However, in
the second case, shown in Fig. 1.2, the situation is very different and it is hard to
distinguish between the continuum function �

QM

E=2.455696(r) which is obtained by the
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8 Different formulations of quantum mechanics
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Figure 1.2 The third longest living resonance for a spherical potential, V (r) =
(r2/2 − 0.8) exp(−0.1r2), obtained by carrying out three different types of calcu-
lation. The top of the potential barrier is plotted using a full dark line.

standard (Hermitian) quantum mechanical calculations and any other continuum solu-
tion which typically has a larger amplitude in the external region than in the internal
region (i.e., inside the potential well). Therefore, within the Hermitian formalism of
quantum mechanics the continuum functions associated with energy-eigenvalues which
are equal to the real parts of the complex resonance poles are not necessarily localized
in the interaction region and are not necessarily very different in their nature from other
continuum functions. Note that even for the first case where the Hermitian continuum
function is localized inside the potential well there are infinitely many other contin-
uum eigenfunctions that have the same structure. Roughly speaking, any eigenfunction
which is associated with an energy-eigenvalue E of the Hermitian Hamiltonian in the
range

Re(Eres
1 ) − �res

1 /2 < E < Re(Eres
1 ) + �res

1 /2 , (1.3)

where �res
1 = 2Im(Eres

1 ) = 0.34750 au, looks similar to the Hermitian continuum func-
tion shown in Fig. 1.1. This is the reason that within the framework of the standard
formalism of quantum mechanics the resonance phenomenon is associated with the
dynamical behavior of wavepackets rather than with a single stationary solution of the
time-dependent Schrödinger equation.

(2) Now we repeat the calculations while imposing outgoing boundary conditions on
the solutions of the time-independent Schrödinger equation. That is, we demand that
ψ(r → ∞) = C exp(+ikr). As mentioned above and as will be discussed in detail in
Chapter 4, in this case the eigenfunctions are not in the Hermitian sector of the domain
of the Hamiltonian and E will attain complex discrete values, Eres

n , where here, for
example, Eres

1 = 1.784582 − 0.173750i au and Eres
2 = 2.455696 − 1.111399i au. Note
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1.2 Non-Hermitian potentials which support a continuous spectrum 9

that the inverse of �res
n ≡ −2Im(Eres

n ) provides the lifetime of the nth resonance state.
As �res

n increases the lifetime of the metastable state is shorter. The calculations are
simple and straightforward. Figures 1.1 and 1.2 show the second and third longest liv-
ing resonance states obtained by the non-Hermitian quantum mechanical calculations.
Their asymptotes diverge exponentially and therefore neither of the resonance wave-
functions are embedded in the Hermitian sector of the domain of the Hamiltonian. That
is clear in spite of the fact that when outgoing boundary conditions are imposed the
resonance states are uniquely defined and can be easily evaluated for one-dimensional,
one-particle problems. However, it is hard to develop a coherent quantum mechanical
theory using functions which are not bounded and can not be expanded by orthonormal
square integrable functions (embedded in the Hilbert space).

(3) The third approach we use here, which will be described in detail in Chapter 5, is
in a sense a “trick” to change the asymptotical behavior of the non-Hermitian reso-
nance wavefunctions by rotating the coordinates into the complex plane. For example,
the simplest way to perform such a procedure is by taking r → r exp(iθ ). The com-
plex scaled resonance eigenfunction which has been obtained by imposing outgoing
boundary conditions on the solutions of the time-independent Schrödinger equation
is a square integrable eigenfunction of the complex scaled Hamiltonian. The math-
ematical justification for the use of this type of non-unitary transformation and its
limitations will be discussed in Chapter 5. At this time we wish to point out the moti-
vation for using this approach. The results presented in Figs. 1.1 and 1.2 show that
upon complex scaling both of the short-living resonance wavefunctions are square
integrable and decay exponentially to zero as r → ∞. Therefore, due to the rotation
of the coordinate into the complex plane, both of the resonances are embedded in
the generalized Hilbert space and can be expanded by a set of orthonormal square-
integrable basis functions. This property enables us to develop a non-Hermitian quan-
tum mechanical theory and computational methods for calculating resonance energies,
lifetimes and cross sections. From the results presented in Section 1.1 one might get
the (wrong) impression that in the Hermitian and non-Hermitian pictures the resonance
wavefunctions look alike. However, they are very different in their nature. The non-
Hermitian resonance eigenfunction is associated with a complex eigenvalue whereas
the Hermitian solution is associated with a real eigenvalue. The asymptote of the non-
Hermitian complex scaled resonance function decays to zero whereas the Hermitian
resonance wavefunction oscillates. The results obtained from the Hermitian and the
non-Hermitian (complex scaling) calculations for the third longest living metastable
(resonance) state in Fig. 1.2 are very different. This resonance has a very short lifetime
since 1 au = 2.419 · 10−17 s and life-time = 1/(2 × 1.111399) au in our case. While
the Hermitian wavefunction can not be distinguished from any other continuum state,
the non-Hermitian resonance function has a sharp and clear nodal structure at the
interaction region (inside the potential well), it decays exponentially to zero and there-
fore it is a square-integrable function which is embedded in the generalized Hilbert
space.
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10 Different formulations of quantum mechanics

We can summarize this by stating that the resonance states are well defined in
quantum mechanics within the framework of the non-Hermitian formalism. In non-
Hermitian quantum mechanics a resonance is associated with a single eigenstate
of the Hamiltonian and not with a collection of continuum states (i.e., wavepacket)
which is the case in Hermitian quantum mechanics.

1.3 Complex local potentials

In these cases the Hamiltonian is non-Hermitian despite the fact that the eigen-
functions of the time-independent Schrödinger equation are square integrable.
The potentials are complex for different reasons. One example is when complex
absorbing potentials are introduced in the propagation of waves solving either
the Scrödinger equation (or the scalar Maxwell equation in the paraxial approx-
imation) or the vector Maxwell equations. The motivation to introduce complex
reflection-free absorbing potentials is to avoid the non-physical interferences which
are introduced in conventional calculations by the reflections of the tail of the
propagated wave packet from the edge of the grid used in the numerical compu-
tations. Physical reasons for introducing complex potentials may arise in optics
(due to a complex index of refraction), field theory, and even in cases where
the quantum language is used to describe the physics when the studied problems
are associated with classical statistical mechanics or with diffusion in biological
systems.

As an example of a non-Hermitian Hamiltonian that is not related to the res-
onance phenomena, let us mention the Hamiltonian that becomes non-Hermitian
due to the inclusion of purely imaginary external fields, e.g., igx3, where g is a real
parameter and the Hamiltonian commutes with the symmetry operator: x → −x

and i → −i. This symmetry operator, is known as the PT symmetry operator,
where P is the parity operator, i.e., PxP−1 = −x and T is the time-reversal sym-
metry operator where i → −i, i.e., T iT −1 = −i. Note in passing that T is an
anti-linear operator while the Hamiltonian is a linear operator.

Exercise 1.3

Show by using semiclassical arguments that the spectrum of non-Hermitian Hamilto-
nian Ĥ = p̂2 + igx3 is real and positive for any value of g 	= 0 provided the solution
eigenfunctions are defined on the whole real line.

In analogy to quantum-mechanical theory, quantum field theories for such
non-Hermitian Hamiltonians possess special properties. The Hamiltonians which
commute with the PT symmetry operator hold additional special properties. For
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