The economic crisis of 2008 has shown that the capital markets need new theoretical and mathematical concepts to describe and price financial instruments.

Focusing on interest rates and coupon bonds, this book does not employ stochastic calculus – the bedrock of the present day mathematical finance – for any of the derivations. Instead, it analyzes interest rates and coupon bonds using quantum finance. The Heath–Jarrow–Morton model and the Libor Market Model are generalized by realizing the forward and Libor interest rates as an imperfectly correlated quantum field. Theoretical models have been calibrated and tested using bond and interest rates market data.

Building on the principles formulated in the author’s previous book (Quantum Finance, Cambridge University Press, 2004), this ground-breaking book brings together a diverse collection of theoretical and mathematical interest rate models. It will interest physicists and mathematicians researching in finance, and professionals working in the finance industry.

Belal E. Baaquie is Professor of Physics in the Department of Physics at the National University of Singapore. He obtained his B.S. from Caltech and his Ph.D. from Cornell University. His specialization is in quantum field theory, and he has spent the last ten years applying quantum mathematics, and quantum field theory in particular, to quantitative finance. Professor Baaquie is an affiliated researcher with the Risk Management Institute, Singapore, and is a founding Editor of the International Journal of Theoretical and Applied Finance. His pioneering book Quantum Finance has created a new branch of research in theoretical and applied finance.

Cover illustrations: Shanghai skyline and the Bund.
INTEREST RATES AND COUPON BONDS IN QUANTUM FINANCE

BELAL E. BAAQUIE

National University of Singapore
This book is dedicated to my wife Najma Sultana Baaquie, my son Arzish Falaqul Baaquie, and my daughter Tazkiah Faizaan Baaquie. Their precious love, affection, support, and optimism have made this book possible.
Contents

Prologue
page xv

Acknowledgements
xviii

1 Synopsis

2 Interest rates and coupon bonds

2.1 Introduction

2.2 Expanding global money capital

2.3 New centers of global finance

2.4 Interest rates

2.5 Three definitions of interest rates

2.6 Coupon and zero coupon bonds

2.7 Continuous compounding: forward interest rates

2.8 Instantaneous forward interest rates

2.9 Libor and Euribor

2.10 Simple interest rate

2.11 Discrete discounting: zero coupon yield curve

2.12 Zero coupon yield curve and interest rates

2.13 Summary

2.14 Appendix: De-noising financial data

3 Options and option theory

3.1 Introduction

3.2 Options

3.3 Vanilla options

3.4 Exotic options

3.5 Option pricing: arbitrage

3.6 Martingales and option pricing
Contents

3.7 Choice of numeraire 42
3.8 Hedging 42
3.9 Delta-hedging 44
3.10 Black–Scholes equation 46
3.11 Black–Scholes path integral 48
3.12 Path integration and option price 52
3.13 Path integration: European call option 54
3.14 Option price: volatility expansion 56
3.15 Derivatives and the real economy 59
3.16 Summary 62

4 Interest rate and coupon bond options 63
4.1 Introduction 63
4.2 Interest rate swaps 65
4.3 Interest rate caps and floors 70
4.4 Put–call parity for caplets and floorlets 73
4.5 Put–call: empirical Libor caplet and floorlet 75
4.6 Coupon bond options 76
4.7 Put–call parity for European bond option 77
4.8 American coupon bond option put–call inequalities 78
4.9 Interest rate swaptions 79
4.10 Interest rate caps and swaptions 82
4.11 Heath–Jarrow–Morton path integral 83
4.12 HJM coupon bond European option price 85
4.13 Summary 89

5 Quantum field theory of bond forward interest rates 91
5.1 Introduction 91
5.2 Bond forward interest rates: a quantum field 92
5.3 Forward interest rates: Lagrangian and action 94
5.4 Velocity quantum field $\mathcal{A}(t, x)$ 98
5.5 Generating functional for $\mathcal{A}(t, x)$: propagator 100
5.6 Future market time 101
5.7 Stiff propagator 102
5.8 Integral condition for interest rates’ martingale 103
5.9 Pricing kernel and path integration 105
5.10 Wilson expansion of quantum field $\mathcal{A}(t, x)$ 108
5.11 Time evolution of a bond 110
5.12 Differential martingale condition for bonds 112
6 Libor Market Model of interest rates

6.1 Introduction 117
6.2 Libor and zero coupon bonds 119
6.3 Libor Market Model and quantum finance 121
6.4 Libor Martingale: forward bond numeraire 123
6.5 Time evolution of Libor 125
6.6 Volatility $\gamma(t, x)$ for positive Libor 126
6.7 Forward bond numeraire: Libor drift $\zeta(t, T_n)$ 127
6.8 Libor dynamics and correlations 132
6.9 Logarithmic Libor rates $\phi(t, x)$ 134
6.10 Lagrangian and path integral for $\phi(t, x)$ 139
6.11 Libor forward interest rates $f_L(t, x)$ 141
6.12 Summary 144
6.13 Appendix: Limits of the Libor Market Model 146
6.14 Appendix: Jacobian of $A_L(t, x) \rightarrow \phi(t, x)$ 148

7 Empirical analysis of forward interest rates

7.1 Introduction 151
7.2 Interest rate correlation functions 152
7.3 Interest rate volatility 153
7.4 Empirical normalized propagators 155
7.5 Empirical stiff propagator 157
7.6 Empirical stiff propagator: future market time 159
7.7 Empirical analysis of the Libor Market Model 163
7.8 Stochastic volatility $\nu(t, x)$ 166
7.9 Zero coupon yield curve and covariance 169
7.10 Summary 173

8 Libor Market Model of interest rate options

8.1 Introduction 176
8.2 Quantum Libor Market Model: Black caplet 178
8.3 Volatility expansion for Libor drift 180
8.4 Zero coupon bond option 182
8.5 Libor Market Model coupon bond option price 185
8.6 Libor Market Model European swaption price 189
8.7 Libor Asian swaption price 192
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>BGM–Jamshidian swaption price</td>
<td>197</td>
</tr>
<tr>
<td>8.9</td>
<td>Summary</td>
<td>202</td>
</tr>
<tr>
<td>9</td>
<td>Numeraires for bond forward interest rates</td>
<td>204</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>205</td>
</tr>
<tr>
<td>9.2</td>
<td>Money market numeraire</td>
<td>206</td>
</tr>
<tr>
<td>9.3</td>
<td>Forward bond numeraire</td>
<td>206</td>
</tr>
<tr>
<td>9.4</td>
<td>Change of numeraire</td>
<td>207</td>
</tr>
<tr>
<td>9.5</td>
<td>Forward numeraire</td>
<td>208</td>
</tr>
<tr>
<td>9.6</td>
<td>Common Libor numeraire</td>
<td>210</td>
</tr>
<tr>
<td>9.7</td>
<td>Linear pricing a mid-curve caplet</td>
<td>213</td>
</tr>
<tr>
<td>9.8</td>
<td>Forward numeraire and caplet price</td>
<td>214</td>
</tr>
<tr>
<td>9.9</td>
<td>Common Libor measure and caplet price</td>
<td>215</td>
</tr>
<tr>
<td>9.10</td>
<td>Money market numeraire and caplet price</td>
<td>216</td>
</tr>
<tr>
<td>9.11</td>
<td>Numeraire invariance: numerical example</td>
<td>218</td>
</tr>
<tr>
<td>9.12</td>
<td>Put–call parity for numeraires</td>
<td>219</td>
</tr>
<tr>
<td>9.13</td>
<td>Summary</td>
<td>222</td>
</tr>
<tr>
<td>10</td>
<td>Empirical analysis of interest rate caps</td>
<td>223</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>10.2</td>
<td>Linear and Black caplet prices</td>
<td>225</td>
</tr>
<tr>
<td>10.3</td>
<td>Linear caplet price: parameters</td>
<td>227</td>
</tr>
<tr>
<td>10.4</td>
<td>Linear caplet price: market correlator</td>
<td>231</td>
</tr>
<tr>
<td>10.5</td>
<td>Effective volatility: parametric fit</td>
<td>233</td>
</tr>
<tr>
<td>10.6</td>
<td>Pricing an interest rate cap</td>
<td>235</td>
</tr>
<tr>
<td>10.7</td>
<td>Summary</td>
<td>236</td>
</tr>
<tr>
<td>11</td>
<td>Coupon bond European and Asian options</td>
<td>239</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>239</td>
</tr>
<tr>
<td>11.2</td>
<td>Payoff function’s volatility expansion</td>
<td>240</td>
</tr>
<tr>
<td>11.3</td>
<td>Coupon bond option: Feynman expansion</td>
<td>243</td>
</tr>
<tr>
<td>11.4</td>
<td>Cumulant coefficients</td>
<td>247</td>
</tr>
<tr>
<td>11.5</td>
<td>Coupon bond option: approximate price</td>
<td>249</td>
</tr>
<tr>
<td>11.6</td>
<td>Zero coupon bond option price</td>
<td>252</td>
</tr>
<tr>
<td>11.7</td>
<td>Coupon bond Asian option price</td>
<td>254</td>
</tr>
<tr>
<td>11.8</td>
<td>Coupon bond European option: HJM limit</td>
<td>258</td>
</tr>
<tr>
<td>11.9</td>
<td>Coupon bond option: BGM–Jamshidian limit</td>
<td>260</td>
</tr>
<tr>
<td>11.10</td>
<td>Coupon bond Asian option: HJM limit</td>
<td>262</td>
</tr>
<tr>
<td>11.11</td>
<td>Summary</td>
<td>263</td>
</tr>
</tbody>
</table>
Contents

11.12 Appendix: Coupon bond option price 264
11.13 Appendix: Zero coupon bond option price 266

12 Empirical analysis of interest rate swaptions 268
 12.1 Introduction 268
 12.2 Swaption price 269
 12.3 Swaption price ‘at the money’ 271
 12.4 Volatility and correlation of swaptions 272
 12.5 Data from swaption market 274
 12.6 Zero coupon yield curve 275
 12.7 Evaluating I: the forward bond correlator 276
 12.8 Empirical results 279
 12.9 Swaption pricing and HJM model 281
 12.10 Summary 281

13 Correlation of coupon bond options 283
 13.1 Introduction 283
 13.2 Correlation function of coupon bond options 284
 13.3 Perturbation expansion for correlator 285
 13.4 Coefficients for martingale drift 288
 13.5 Coefficients for market drift 293
 13.6 Empirical study 295
 13.7 Summary 300
 13.8 Appendix: Bond option auto-correlation 300

14 Hedging interest rate options 304
 14.1 Introduction 305
 14.2 Portfolio for hedging a caplet 306
 14.3 Delta-hedging interest rate caplet 307
 14.4 Stochastic hedging 308
 14.5 Residual variance 312
 14.6 Empirical analysis of stochastic hedging 314
 14.7 Hedging caplet with two futures for interest rate 317
 14.8 Empirical results on residual variance 319
 14.9 Summary 320
 14.10 Appendix: Residual variance 321
 14.11 Appendix: Conditional probability for interest rate 322
 14.12 Appendix: Conditional probability – two interest rates 325
 14.13 Appendix: HJM limit of hedging functions 327
Contents

15 Interest rate Hamiltonian and option theory 329

15.1 Introduction 329
15.2 Hamiltonian and equity option pricing 330
15.3 Equity Hamiltonian and martingale condition 332
15.4 Pricing kernel and Hamiltonian 333
15.5 Hamiltonian for Black–Scholes equation 335
15.6 Interest rate state space V_t 337
15.7 Interest rate Hamiltonian 339
15.8 Interest rate Hamiltonian: martingale condition 343
15.9 Numeraire and Hamiltonian 346
15.10 Hamiltonian and Libor Market Model drift 347
15.11 Interest rate Hamiltonian and option pricing 353
15.12 Bond evolution operator 356
15.13 Libor evolution operator 360
15.14 Summary 363

16 American options for coupon bonds and interest rates 365

16.1 Introduction 366
16.2 American equity option 367
16.3 American caplet and coupon bond options 372
16.4 Forward interest rates: lattice theory 375
16.5 American option: recursion equation 378
16.6 Forward interest rates: tree structure 382
16.7 American option: numerical algorithm 383
16.8 American caplet: numerical results 388
16.9 Numerical results: American coupon bond option 390
16.10 Put–call for American coupon bond option 394
16.11 Summary 397

17 Hamiltonian derivation of coupon bond options 399

17.1 Introduction 400
17.2 Coupon bond European option price 400
17.3 Coupon bond barrier eigenfunctions 406
17.4 Zero coupon bond barrier option price 407
17.5 Barrier function 410
17.6 Barrier linearization 413
17.7 Overcomplete barrier eigenfunctions 416
17.8 Coupon bond barrier option price 420
17.9 Barrier option: limiting cases 424
Contents

17.10 Summary 427
17.11 Appendix: Barrier option coefficients 428

Epilogue 433

A Mathematical background 436
A.1 Dirac-delta function 436
A.2 Martingale 439
A.3 Gaussian integration 441
A.4 White noise 446
A.5 Functional differentiation 449
A.6 State space \(\mathcal{V} \) 450
A.7 Quantum field 454
A.8 Quantum mathematics 457

B US debt markets 460
B.1 Growth of US debt market 460
B.2 2008 Financial meltdown: US subprime loans 462

Glossary of physics terms 468
Glossary of finance terms 470
List of symbols 473
References 481
Index 486
The 2008 economic crisis has shown that the capital markets need new and fresh theoretical and mathematical concepts for designing and pricing financial instruments. Focusing on interest rates and coupon bonds, this book does not employ stochastic calculus – the bedrock of the present-day mathematical finance – for any of the derivations. Interest rates and coupon bonds are studied in the self-contained framework of quantum finance that is independent of stochastic calculus. Quantum finance provides solutions and results that go beyond the formalism of stochastic calculus.

It is five years since *Quantum Finance* [12] was published in 2004 and it is indeed gratifying to see how well it has been received. No attempt has been made to re-work the principles of finance. Rather, the main thrust of this book is to employ the methods of theoretical physics in addressing the subject of finance. Theoretical physics has accumulated a vast and rich repertoire of mathematical concepts and techniques; it is only natural that this treasure house of quantitative tools be employed to analyze the field of finance, and the debt market in particular.

The term ‘quantum’ in *Quantum Finance* refers to the use of *quantum mathematics*, namely the mathematics and theoretical concepts of quantum mechanics and quantum field theory, in analyzing and studying finance. Finance is an entirely classical subject and there is no \hbar – Planck’s constant, the *sine qua non* of quantum phenomena – in quantum finance: the term ‘quantum’ is a *metaphor*. Consider the case of classical phase transformations that result from the random fluctuations of classical fields; critical exponents, which characterize phase transitions, are computed using the mathematics of nonlinear quantum field theories [95]. Similar to the case of phase transitions, quantum mathematics provides powerful theoretical and mathematical tools for studying the underlying random processes that drive modern finance.

The principles of quantum finance provide a comprehensive and self-contained theoretical platform for modeling all forms of financial instruments. This book,
in particular, is focused on studying interest rates and coupon bonds. A detailed analytical, computational, and empirical study of debt instruments constitutes the main content of this book.

The Libor Market Model and the Heath–Jarrow–Morton model, which are the industry standards for modeling interest rates and coupon bonds, are both based on exactly correlated Libor and forward interest rates. The book makes a quantum finance generalization of these models to imperfectly correlated interest rates by modeling the forward interest rates as a quantum field. Empirical studies provide strong evidence supporting the imperfect correlation of interest rates. Many groundbreaking results are obtained for debt instruments. In particular, it is shown that quantum field theory provides a generalization of Ito calculus that is required for studying imperfectly correlated interest rates.

In the capital markets, interest rates determine the returns on cash deposits. Coupon bonds, on the other hand, are loans that are disbursed – with the objective of earning interest – against promissory notes. In principle, the interest paid on cash deposits and the interest earned on loans are equivalent. However, all interest rates are only defined for a finite time interval – of which the minimum is overnight (24 hours). In particular, all interest rate derivatives are based on benchmark interest rates for cash deposits of a duration of 90 days. The bond (derivatives) markets, in contrast, have no such minimum duration. The existence of a finite duration for the (benchmark) interest rates creates two distinct sectors of the debt derivatives market, namely derivatives of interest rates and derivatives of coupon bonds – with a nonlinear transformation connecting the two sectors.

Numerous and exhaustive calculations are carried out for diverse forms of interest rate and coupon bond options. Complicated concepts and calculations that are typical for debt instruments are introduced and motivated, in some cases by first discussing analogous and simpler equity instruments. It is my view that only by actually working out the various steps required in a calculation can a reader grasp the principles and techniques of what is still a subject in its infancy. Almost all the intermediate steps in the various calculations are included so as to clear the way for the interested reader. A few key ideas are repeated in the various chapters so that each chapter can be read more or less independently.

The material covered in the book is primarily meant for physicists and mathematicians engaged with research in the field of finance, as well as professional theorists working in the finance industry. Specialists working in the field of debt instruments will hopefully find that the theoretical tools and mathematical ideas developed in this book broaden their repertoire of quantitative approaches to finance. The material could also be of interest to physicists, probabilists, applied mathematicians, and statisticians – as well as graduates students in science and engineering – who are thinking of pursuing research in the field of finance.
One of the aims of this book is to be self-contained and comprehensive. All derivations and concepts are introduced from first principles, and all important results are derived \textit{ab initio}. Given the diverse nature of the potential audience, fundamental concepts of finance have been reviewed for readers who are new to this field. Appendix A reviews the essential mathematical background required for following the various derivations and is meant to introduce specialists working in finance to the concepts of quantum mathematics.
Acknowledgements

I thank Bloomberg, Singapore and Capital Fund Management, France for providing data used in the empirical studies.

I thank Cui Liang for many discussions; it has been a great pleasure to have had a fruitful and enjoyable collaboration. I thank Chua Wee Kang, Cao Yang, and Tang Pan for their useful input.

I would like to thank Jiten Bhanap and Sanjiv Das for generously sharing their insights on finance and financial instruments. I thank Jean-Philippe Bouchaud, Ebrahim M. Shahid, Bertrand Roehner, Carl Chiarella, and Lim Kian Guan for useful discussions, Frederick H. Willeboordse for many fruitful interactions and Mitch Warachka and Arzish F. Baaquie for providing valuable feedback.

It is a pleasure to acknowledge the encouragement and friendship of Zahur Ahmed, Yamin Chowdhury, and Bal Menon.

I am indebted to Shih Choon Fong for his invaluable support and visionary leadership. And lastly, I want to record my heartfelt esteem, respect, and gratitude to my father, Mohammad Abdul Baaquie, for being a lifelong source of inspiration, guidance and lofty ideals.