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Introduction

After Einstein first presented his theory of general relativity in 1915, a few
exact solutions of his field equations were found very quickly. All of these
assumed a high degree of symmetry. Some could be interpreted as represent-
ing physically significant situations such as the exterior field of a spherical
star, or a homogeneous and isotropic universe, or plane or cylindrical grav-
itational waves. Yet it took a long time before some of the more subtle
properties of these solutions were widely understood.

In their seminal review of “exact solutions of the gravitational field equa-
tions”, Ehlers and Kundt (1962) included the following statement. “At
present the main problem concerning solutions, in our opinion, is not to
construct more but rather to understand more completely the known solu-
tions with respect to their local geometry, symmetries, singularities, sources,
extensions, completeness, topology, and stability.” Since this was written,
considerable progress has been made in the understanding of many exact
solutions. However, this development has been very restricted compared to
the enormous effort that has been put into the derivation of further “new”
solutions. Although significant advance has been achieved in the interpre-
tation of many solutions, it is a fact that some aspects of even the most
frequently quoted exact solutions still remain poorly understood. The opin-
ion of Ehlers and Kundt thus still indicates an even more urgent task.

In this work, the very traditional approach will be adopted that an ex-
act solution of Einstein’s equations is expressed in terms of a metric in
particular coordinates. Specifically, it will be represented in the form of a
3+1-dimensional line element in which the coordinates have certain ranges.
Our purpose will be to try to identify its physical interpretation. Does
it represent a specific physical situation? Does it include singularities or
horizons, and what do these mean? For what range of the coordinates is
the solution valid, or can it be extended by the introduction of different

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521889278
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-88927-8 - Exact Space-Times in Einstein’s General Relativity
Jerry B. Griffiths and Jiri Podolsky

Excerpt

More information

2 Introduction

coordinates? How does it behave asymptotically? Does it approach other
known solutions in specific limits? These and other questions will be used
to probe the meaning of the solutions considered.

It must be remembered of course, that an exact solution of Einstein’s
equations as defined above is initially just a local solution of the field equa-
tions. Global and topological properties of the associated manifold may
be chosen according to our own prejudices. They are not implied by the
field equations. Thus it may well occur that some particular exact solution
may have a number of very different physical interpretations. For example,
part of the well-known Schwarzschild solution may either represent part of
the space-time inside the horizon of a black hole, or it could represent the
interaction region following the collision of two specific plane gravitational
waves.

Such cases in which a particular solution has a number of possible inter-
pretations are, however, unusual. It is far more likely that a solution has
no useful physical significance at all. Nevertheless, each space-time may
at least be understood in terms of its geometrical properties. And it could
well be that realistic physical situations may be approximated by compound
space-times formed by patching different local exact solutions in appropriate
ways. To construct such space-times, it is necessary to have some under-
standing of the properties of each component. Thus, although this work will
concentrate on the simpler solutions that have clear physical meanings, we
will also describe the basic properties of related solutions even when their
immediate applicability is unclear.

Einstein’s general theory of relativity is a covariant theory. The same
physical space-time may be expressed (at least locally) in any number of dif-
ferent coordinate representations. Smooth coordinate transformations can
be applied without changing the character of the physical space-time itself.
However, for any particular space-time, some coordinate systems are more
useful than others. Some may be convenient because they enable the field
equations to be expressed in forms that have nice mathematical properties.
Others may be more useful for a physical interpretation of the space-time.
However, when transforming from one coordinate system to another, the dif-
ferent coordinates may not be in a simple one-to-one correspondence with
each other over their natural ranges. In such cases, the different coordinates
may span different portions of the complete space-time. Care therefore has
to be taken in specifying the ranges of the coordinates employed, and also
in identifying whether or not the boundaries of the coordinate patch corre-
spond to the boundaries of the physical space-time being represented.

This principle of general covariance also has significant implications in the
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derivation of “new” solutions of the field equations. It is generally unclear
initially whether a solution that is newly obtained is a known solution in
an unfamiliar coordinate system or represents a previously unknown space-
time. This is referred to as “the equivalence problem” that has now been
widely addressed in the literature (see for example Chapter 9 in Stephani et
al., 2003).

In presenting a solution of Einstein’s equations, it is now standard prac-
tice to identify its local sources (i.e. the structure of the Einstein tensor,
and hence of the energy-momentum tensor), the algebraic type of the Weyl
tensor, its curvature invariants, and the number and type of its symmetries.
These are all essential in assisting to classify the solution, and hence to de-
termine whether or not it is genuinely new rather than a new coordinate
representation of some previously known solution. These properties are also
important for its physical interpretation.

The solutions described in this work mostly represent vacuum space-times.
Often a cosmological constant or an electromagnetic field will be included,
or occasionally even a pure radiation field. However, we have severely re-
stricted the number of solutions included that have a perfect fluid source.
The reason for this decision is simply that, although such solutions are often
interpreted as possible cosmological models or stellar interiors, they are al-
ready thoroughly reviewed in published literature. In particular, we would
recommend the classic text of Ryan and Shepley (1975) on homogeneous cos-
mological models and the excellent and complementary book of Krasinski
(1997) on inhomogeneous models.

We initially deal with the fundamental Minkowski, de Sitter and anti-
de Sitter spaces and the Friedmann-Lemailtre-Robertson—Walker universes,
which are all conformally flat and highly symmetric. We then address so-
lutions which have Weyl tensors that are of the special algebraic types D
and N, which generally represent the simplest non-radiating and radiating
solutions. And we finally proceed to address some algebraically more general
solutions. As some of the simplest known solutions of Einstein’s equations,
most of those described here have a high degree of symmetry. However,
we will not generally identify all the Killing vectors, and the existence of
homothetic and conformal symmetries will be largely ignored.

A basic knowledge of Einstein’s theory of relativity is assumed through-
out this work. On the other hand, since we will not describe any method
by which exact solutions are obtained, it will not be necessary to intro-
duce much unfamiliar notation or advanced techniques. We trust that the
notation used will be familiar, modulo certain sign conventions.

For the specific notation employed in this book, we have tried to follow
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4 Introduction

as closely as appropriate that of the “exact solutions” book of Stephani et
al. (2003). This also includes some very helpful introductory surveys of
certain important topics in general relativity and differential geometry that
therefore need not be repeated here.

We very willingly acknowledge that there have been many previous re-
views of various exact solutions of Einstein’s equations which emphasise
aspects of their physical interpretation. We are therefore building on a sure
foundation. However, the subject has now become so vast that any review
must be selective and will inevitably reflect the prejudices of the authors.
A balance also has to be struck between pedagogy and a review of current
research. Each review has been addressed to a particular need, and we trust
that our present contribution to the literature will be sufficiently different
as to be considered a welcome addition.

Published work on the particular topics discussed in this book will be
cited in the relevant sections. However, some general reviews apply more
widely and are more appropriately cited here.

An early review by Ehlers and Kundt (1962) has had a significant impact
on all later work. Understanding of the global properties of space-times was
greatly advanced by the book of Hawking and Ellis (1973). Another seminal
work that has had a major impact on the subject is the “exact solutions”
book of Kramer et al. (1980). A most welcome second edition of this is
now available (Stephani et al., 2003). This provides an exhaustive review of
known solutions at that time, but does not usually emphasise their physical
interpretation.

Reviews of exact solutions with an emphasis on their interpretation have
been given by Bonnor (1982, 1992), Bonnor, Griffiths and MacCallum (1994)
and Bi¢dk (2000a). Reviews of general families of radiative space-times have
been given by Bic¢dk (1989, 1997, 2000b) and Bi¢dk and Krtous (2003). For
a brief and modern introduction to this subject, see Bi¢dk (2006).
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Basic tools and concepts

The purpose of this chapter is to define the notation that is used in this
book, to introduce some basic tools that are employed, and to make a few
initial comments on some of the concepts involved. It is not intended as a
review of the topics mentioned, as these are described thoroughly in existing
textbooks on general relativity.

2.1 Local geometry

Throughout this book, a solution of Einstein’s equations is assumed to be
given in terms of a metric, that is expressed in some local coordinate system,
and which could represent a particular region of some theoretically possible
space-time.

Space-time is assumed to be 3+1-dimensional. Taking the timelike coordi-
nate first, the metric is assumed to have a Lorentzian signature (—, 4, +, +)
so that timelike vectors have negative magnitude. It is represented (at least
locally) by a manifold M with a symmetric metric g with coordinate com-
ponents g,,, where Greek letters span 0,1,2,3. The inverse of g, is denoted
by g"*”.

The speed of light is taken to be unity so that time and distance are mea-
sured by the same (unspecified) units, and null cones in space-time diagrams
are normally drawn at an angle of 45° to the vertical.

The manifold M is assumed to be endowed with a linear (metric) connec-
tion that can be expressed in a coordinate basis in the form

F)\;w - %g)\a (guoz,u + Gvau — guu,u)y

where the summation convention is adopted and a comma denotes a partial
derivative. A semi-colon is used to denote a covariant derivative, so that the
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6 Basic tools and concepts

covariant derivative of a vector V# is given by
vi,=Vv~r, +T0 V.

It is frequently important, at any event (or point in space-time), to de-
termine the components of vectors or tensors in particular directions. For
this, it is first appropriate to introduce a normalised orthonormal tetrad
t,x,y, z, composed of a timelike and three spacelike vectors. From these, it

is convenient to construct a null tetrad k, I, m,m, with the two null vectors

k= %(t +2z)andl = %(t — z), and the complex vector m = \%(m —iy)

and its conjugate m = %(w +iy), which span the 2-spaces orthogonal to
k and I. These null tetrad vectors are mutually orthogonal except that
k, " = —1 and m, m/ = 1. With these conditions, the metric tensor can be
expressed in terms of its null tetrad components in the form

9w = =k b, — L, k, +m,m, +m,m,.
Such a null tetrad may be transformed in the following ways:
K =k, U!=1+Lm+Lm+LLE, m =m+ Lk, (2.1)
K=k+Km+Km+KKI, =1, m =m+KI, (2.2)
k' = Bk, =B, m' = e®m, (2.3)

where L and K are complex and B and ® are real parameters. Together,
these represent the six-parameter group of Lorentz transformations.

2.1.1 Curvature

Using the above notation, the (Riemann) curvature tensor, defined such that
Vi = V% = =RV,
is given by
Ry =T%, =T, T — T (2.4)

This generally has 20 independent components according to the symmetries
R*)\(uw) = 0, R¥\ ) = 0 and R(\),, = 0, where round and square brackets
are used to denote the symmetric and antisymmetric parts, respectively.
Defining the (symmetric) Ricci tensor and the Ricci scalar by

Ry =R, R=g""R.s, (2.5)
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2.1 Local geometry 7

the trace-free part of the curvature tensor is given explicitly by

Cﬁ)\uu = Rﬁ)\uy + %(Rkugm/ + Rm/g)\u - R)\l/gI{,LL - Rnugku) (2 6)

+%R (gﬁug)\y - gngu).

This is known as the Weyl tensor which, in general, has ten independent
components.

The curvature tensor can be expressed in terms of its various tetrad com-
ponents. In particular, the ten independent components of the Ricci tensor
are determined by the scalar quantities defined as’

D = % R,u,y kH kY, D9y = % R/U/ i,
o1 = 3 R k'm?, @19 = 5 Ry 1M m”, (2.7)
Dpp = %Rlu/ mtm”, P11 = % R/wUfﬂ IV +mkt my)7
in which ® 45 are generally complex but satisfy the constraint ®45 = ®pa,
and the Ricci scalar R.

The ten independent components of the Weyl tensor are similarly deter-
mined by the five complex scalar functions defined as

Vo = Cirpw K m* kFmY,

Uy = Conu k” Mk mY,

Uy = Ciruw K m N mt 1Y, (2.8)
U3 = Conw " N 1Y

Uy = Cn)\/w 15 I

By considering the equation of geodesic deviation (see below) in a suitably
adapted frame, these components (in vacuum space-times) may be shown
generally to have the following physical meanings:

U, is a transverse component propagating in the I direction,

¥, is a longitudinal component in the I direction,

VU, is a Coulomb-like component, (2.9)
U3 is a longitudinal component in the k direction,

U, is a transverse component propagating in the k direction.

According to Einstein’s general theory of relativity, the curvature of space-
time is related to the distribution of matter. Specifically, components of the

L The notation for these components, and those of the Weyl tensor given below, is closely related
to that of Newman and Penrose (1962). However, a variant of the Newman—Penrose formalism
is required here because a different signature is employed. The notation used here is that given
in Stephani et al. (2003).
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8 Basic tools and concepts

Ricci tensor are directly related to the local energy-momentum tensor 7},
by Einstein’s field equations

RW—%RngLAgW:SwTW, (2.10)

in which units of mass have been chosen so that G = 1, and A is the cosmo-
logical constant. This can also be rewritten in terms of the Einstein tensor
Gu =Ry — 3 Rgu.

The trace-free part of the curvature tensor (i.e. the Weyl tensor), however,
is determined only indirectly from the field equations. These components
may therefore be understood as representing “free components” of the grav-
itational field that also arise from non-local sources. In seeking to interpret
any exact solution physically, these components need to be investigated ex-
plicitly.

2.1.2 Algebraic classification

For reasons that will be clarified in Section 2.3.3, a space-time is said to
be conformally flat if its Weyl tensor vanishes, i.e. if C),, = 0. Otherwise,
gravitational fields are usually classified according to the Petrov—Penrose
classification of their Weyl tensor. This is based on the number of its distinct
principal null directions and the number of times these are repeated.

A null vector k is said to be a principal null direction of the gravitational
field if it satisfies the property

k[pC’HW[VkU]kAk“ =0. (2.11)

If k is a member of the null tetrad defined above, then the condition (2.11) is
equivalent to the statement that Wy = 0. It may then be noted that, under
a transformation (2.2) of the tetrad which keeps I fixed, but changes the
direction of k, the component ¥, of the Weyl tensor transforms as

Uy = Uy — 4KV, + 6K%Uy — AK305 + K40,/

The condition for k to be a principal null direction, i.e. that ¥y = 0, is thus
equivalent to the existence of a root K such that

Uy — 4K + 6 K20y — 4K303" + Ko, = 0. (2.12)

Since this is a quartic expression in K, there are four (complex) roots to
this equation, although these do not need to be distinct.

Each root of (2.12) corresponds to a principal null direction which can be
constructed using (2.2), and the multiplicity of each principal null direction
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2.1 Local geometry 9

is the same as the multiplicity of the corresponding root. For a principal
null direction k of multiplicity 1, 2, 3 or 4, it can be shown that, respectively

k:[pC’HWL[l,kU]k’\k“ =0 & Uy =0, Uy #£0,
Cornplkok k=0 = Uy =", =0, Uy £ 0,
Coruko k! =0 & Uy=V; =W, =0, Uy £ 0,
Cirxuwk? =0 S VUg=V; =Wy =Us3=0, ¥y #D0.

If a space-time admits four distinct principal null directions (pnds), it

is said to be algebraically general, or of type I, otherwise it is algebraically
special. The distinct algebraic types can be summarised as follows:

type I : four distinct pnds

type Il : one pnd of multiplicity 2, others distinct
type D : two distinct pnds of multiplicity 2

type III :  one pnd of multiplicity 3, other distinct
type N : one pnd of multiplicity 4

type O : conformally flat

If either of the basis vectors k or [ are aligned with principal null direc-
tions, either Wy = 0 or ¥4 = 0, respectively. If the vector k is aligned with
the repeated principal null direction of an algebraically special space-time,
then g =0 = ;. If k and [ are both aligned with the two repeated princi-
pal null directions of a type D space-time, then the only non-zero component
of the Weyl tensor is Ws. For a type N space-time with repeated principal
null direction k, the only non-zero component of the Weyl tensor is Wy.

Two particularly useful complex scalar polynomial invariants for a vacuum
space-time are given in terms of the Weyl tensor components by

Ty U Uy
I=UgWy — 40Uy 4+ 3T,2, J=| 0 Uy T3 |. (2.13)
Uy, U3 Uy

In fact, the real part of I is % times the Kretschmann scalar R,.MM,,R"')"””
for the vacuum case.

It may be noted that, for algebraically special space-times, it is necessary
that I? = 27J%. In this case, if I and J vanish, the space-time must be of
types N or III, otherwise is must be of types D or II. Moreover, if k is a
repeated principal null direction, a space-time for which I and J are non-zero
is of type D if 3Wy Wy = 2W32, otherwise it is of type II. (For further details
see Stephani et al., 2003.) The space-time is also of type D if ¥; =0 = V3
and UyW, = 9U,? (see Chandrasekhar and Xanthopoulos, 1986).
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10 Basic tools and concepts

In general, including the Ricci scalar R, it is known that there exist 14 real
scalar polynomial invariants of the type (2.13), which involve components of
both the Ricci and Weyl tensors. However, 14 independent scalars like this
are not known explicitly. In practice, it is convenient to define 16 or 17 such
scalar quantities and a number of constraints, or syzygies, constraining them.
For details of these, their meanings and the relations between them, see
Penrose and Rindler (1986), Carminati and McLenaghan (1991), Zakhary
and McIntosh (1997) and references contained therein.

2.1.3 Geodesics and geometrical optics

In some local region of space-time, any two events may be joined by a fam-
ily of curves. Within such a family, the curve which has either maximum
or minimum proper length is known as a geodesic. (It is a maximum or
minimum according to whether the events have a timelike or spacelike sep-
aration, respectively.) For space-times with a metric connection, a geodesic
also has the property that its tangent vector is parallelly transported along
it (i.e. it is autoparallel). These are two distinct properties of what is intu-
itively required to generalise the concept of a straight line in flat space to a
curved space-time.

Consider a three-parameter family of curves in a region of space-time such
that exactly one curve passes through each point. The equations of such a
congruence can be written in terms of the local coordinates z* in the form

x'u = x’u (y/L’ 8)7

where 3', (i =1,2,3) are the parameters identifying particular curves of
the congruence and s is a parameter along each. The corresponding vector
field v that is tangent to the congruence at all points is given by

/L
vH = dz )
ds

The congruence is null if v,v" = 0, and consists of geodesics if the tangent
vectors are parallelly transported along it, i.e. if

D v#
ds

=k, 0" = Aot

for some A(y', s), where D/ds denotes the derivative along the congruence.
The parameter s is called affine if A = 0, in which case s is defined up to
a linear transformation. For such an affine parameter, the above geodesic
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