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Epigraph

To all the happy ice crystals in planetary atmospheres

Let there be light.

Let there be beautiful ice crystals in the air and mountain ranges.

And here come the reindeers and Santa Claus carrying Maxwell’s equations, and

light rays are shining in the wonderlands.

Let the glory of Geometric Optics for ice crystals, Newton’s optics, and sun’s

light rays rise again from the horizon.

Let ice crystals’ old friends – black carbon and dust – be not forgot for Auld

Lang Syne.

And ice crystals are carried by the ceaseless winds; and

After traveling thousands of miles up and down, the sky looks very blue.

Let there be space missions to tender ubiquitous light rays in the sky,

And all things considered, let light scattering by ice crystals in remote sensing

and climate change be a delight.
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Preface

The preparation of Light Scattering by Ice Crystals: Fundamentals and Applications began

about seven years ago. We thought that sufficient material should be available to compose

a high-level text reflective of the complex and intricate domain of ice crystals in the Earth’s

atmosphere and their interaction with “light” from the sun and that emitted from the Earth

and the atmosphere, with applications to remote sensing and climate studies. This text was

supposed to be a three- to four-year project; however, after sifting through the literature

for about two years, gaps emerged on various subjects, including both fundamentals and

applications. For this reason, we conducted additional research in an attempt to bridge

various gaps that are essential, from our perspective, to the unification of all subjects in a

coherent and logical manner with reference to light scattering by ice crystals. Accordingly,

we are pleased to present this text for active researchers and advanced graduate students

who are interested in general areas of atmospheric physics, atmospheric radiative transfer,

atmospheric optics, computational modeling, cloud–climate interactions, and remote sens-

ing of the atmosphere and oceans within the purview of atmospheric and climate sciences.

It is intended to complement other researchers who work in the field of light scattering by

non-spherical particles, which includes ice crystals.

“Ice in the Earth’s atmosphere,” the title of Chapter 1, plays a key role in the hydrological

cycle and precipitation processes. Furthermore, ice clouds in the upper troposphere through

their solar albedo and infrared greenhouse effects are critical elements in determining

surface and atmospheric temperature patterns within the context of greenhouse warming

and climate change induced by man-made perturbations in greenhouse gases and regional air

pollution. In Chapter 1, we introduce cloud classification, a global view of clouds in general,

and cirrus clouds in particular, followed by discussion of the formation and growth of ice

crystals. We then illustrate the complex nature of ice crystals with reference to their size and

three-dimensional morphology based on findings obtained from laboratory experiments and

aircraft observations, to establish a correlation between ice water content and ice crystal

size. This correlation is important in developing radiative transfer parameterizations in

climate models and in understanding the role of ice in climate radiative forcing. Lastly,

we present a two-dimensional cirrus cloud model to illustrate interactions of winds, ice

microphysics, and radiative transfer.

xii
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Preface xiii

In Chapter 2, “Fundamentals of light scattering by ice crystals,” a number of fundamental

subjects are presented in relation to light scattering by ice crystals. We discuss the scope

and boundaries of light scattering by ice crystals and present the fundamental Maxwell’s

equations, leading to vector wave equations whose solutions require the imposition of

boundary conditions. We show that exact analytic solutions of vector wave equations exist

only for spherical, circular cylindrical, and spheroidal coordinates. The optical properties

of ice are then introduced, followed by a discussion that defines the single-scattering and

polarization properties of non-spherical ice crystals, including the meaning of the scattering

phase matrix. We subsequently discuss the link between single-scattering properties of ice

crystals, deduced from the independent scattering concept, and the transfer of radiation,

including multiple scattering and emission within ice crystal clouds.

Chapter 3, entitled “Principles of geometric optics for application to light scattering

by ice crystals,” presents the geometric-optics approach to light scattering by ice crystals,

starting with an overview of the essence of geometric optics, including diffraction and

surface waves, from several historical perspectives. We then illustrate fascinating ice optics

produced by randomly and horizontally oriented ice particles by means of Monte Carlo

geometric ray tracing. Subsequently, we demonstrate that exact solutions for diffraction

involving a number of ice crystal shapes can be analytically derived, followed by discus-

sion of conventional and improved geometric-optics approaches, and, based on a number of

postulations, introduce surface-wave contributions – the edge effect – for spheres with mod-

ification to hexagonal ice crystals. Lastly, we present a unified theory of light scattering by

ice crystals on the basis of the geometric-optics surface-wave approach. In this discussion,

theoretical phase functions are compared with those determined from controlled laboratory

light scattering and spectroscopic experiments, as well as application to light absorption

and scattering by snow grains internally contaminated by black carbon and dust particles

wherein stochastic processes are further introduced.

In Chapter 4, “Other useful approaches to light scattering by ice particles,” we confine

our presentations to three contemporary numerical approaches to light scattering by non-

spherical particles within the purview of their applications to light scattering by ice crystals,

namely the finite-difference time domain method, the T-matrix numerical method, and the

discrete dipole approximation. Single-scattering and phase matrix results determined from

these methods for applicable ice crystal size and shape ranges have been used to cross check

and calibrate those computed from a number of geometric-optics approaches. Moreover, we

develop numerical techniques to improve the first two methodologies in terms of particle

size applicability, as well as application to intricate particle shapes.

The subject of “Application of light scattering by ice crystals to remote sensing” is

presented in Chapter 5, wherein we first discuss atmospheric composition and structure,

the atmospheric absorption spectrum, sun–satellite geometry, radiative transfer, and the

contemporary A-Train satellite constellation, which are important for cirrus cloud detection

and quantification. From that base, we then present the subject of retrieving the optical depth

and ice crystal size of cirrus clouds using reflected visible and near-infrared radiation and

illustrate the importance of the phase function of ice crystals. A discussion follows on
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detecting thin cirrus and vertical sizing of cirrus cloud layers. We subsequently cover the

subjects of remote sensing of ice clouds using reflected polarization and the principle of

backscattering depolarization to differentiate ice crystals and water droplets. Lastly, we

present reflected line spectra in the 1.38µm band and the oxygen A-band for inferring the

composition and optical properties of high clouds.

Chapter 6, the last chapter of the text, comprises discussions of “Application of light

scattering by ice crystals to climate studies.” Herein, we present the physical foundations

for parameterization of the extinction and absorption coefficients and phase function, for

ice crystals imbedded in gaseous absorption line formation. We then discuss delta-two-

stream and delta-four-stream approximations for efficient radiative flux transfer in non-

homogeneous plane-parallel atmospheres and compare theoretical results with aircraft

and satellite observations. On this basis, we present radiative forcing of cirrus clouds

from the viewpoint of theoretical calculations and point out the prevalence of the infrared

greenhouse effect over its solar albedo counterpart. This is followed by a presentation of

climatic effects of cirrus clouds from the perspective of one-dimensional climate models,

where we point out that cloud cover, ice water path, and ice crystal size are influenced by

temperature increases in greenhouse warming scenarios. Also discussed are examples of the

impacts of microphysics on precipitation and radiative forcings using results analyzed from

global climate model simulations. We then present a number of climatic issues associated

with cirrus clouds, including contrails and induced contrail cirrus produced by high-flying

aircraft, a man-made perturbation, their role in upper troposphere and lower stratosphere

exchanges, and the usefulness of optically thin cirrus data determined from modern satellite

instrumentation for ice cloud parameterization development in climate models.

In view of the above, the subject of light scattering by ice crystals as presented in this

text has made definitive contributions to fundamental understanding of and insight into

light scattering, absorption, and polarization processes involving ice crystals. Moreover,

light scattering by ice crystals has provided a new dimension and valuable datasets to the

development of satellite remote sensing of ubiquitous cirrus clouds comprising various ice

crystal sizes and morphologies, as well as to radiation parameterizations for these clouds

in climate models to investigate uncertainties surrounding their role in temperature and

precipitation responses to global warming and climate change.
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