A2M. See alfa-2-macroglobulin
ABPI. See Association of the British Pharmaceutical Industry
ABPM. See ambulatory blood pressure measurements
absorption, distribution, metabolism, and elimination (ADME), 79, 318–19
accelerator mass spectrometry (AMS), 293
accuracy, 26–7
aceclofenac, 87
acellular matrices, 126
acenocoumarol, 85
acetylsalicylic acid, 87, 161
ACG. See anterior cingulate gyrus
ACS. See acute coronary syndromes
acute coronary syndromes (ACS), 213–15
acute lymphocytic leukemia (ALL), 89
addictions, 251
adenosine 5’ phosphosulfate (APS), 36–7
adenosine A1-receptor, 233
adiponectin, 155
ADME. See absorption, distribution, metabolism, and elimination
adoptive immune therapy, 59
ADR. See adverse drug effects
1 alpha-adrenergic receptor antagonists, 133
adrenergic receptors, 131
adverse drug effects (ADR), 79
Affymetrix, 39, 44, 45–54
AGI-1067, 231
AIDS, 183
AKT1, 265–6
ALAT, 160
albumin, 316
in serum, 22
albuminone, 24
albuminuria, 221
alfa-2-macroglobulin (A2M), 217
ALL. See acute lymphocytic leukemia
allele-specific oligonucleotide hybridization (ASOH), 39, 41–4
alpha 1 receptor, 130–1
alpha 2 receptor, 130–1
alpha-blockers, 132, 133
Alzheimer’s disease, 167
ambulatory blood pressure measurements (ABPM), 221
AMD3100, 68, 74
American Physiological Association (APA), 122
Ames test, 323
Amgen, 14
amphotericin, 47
AMS. See accelerator mass spectrometry
analysis of covariance (ANCOVA), 342, 347
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>analysis of variance (ANOVA)</td>
<td>342, 347</td>
</tr>
<tr>
<td>“Anatomia” (Liuzzi)</td>
<td>112–13</td>
</tr>
<tr>
<td>ANCOVA. See analysis of covariance</td>
<td></td>
</tr>
<tr>
<td>angiography</td>
<td></td>
</tr>
<tr>
<td>animal studies, 169</td>
<td></td>
</tr>
<tr>
<td>APA and, 122</td>
<td></td>
</tr>
<tr>
<td>for atherosclerosis, 228–31</td>
<td></td>
</tr>
<tr>
<td>BP in, 222</td>
<td></td>
</tr>
<tr>
<td>Declaration of Helsinki and, 121–2</td>
<td></td>
</tr>
<tr>
<td>Directive 86/609 and, 125</td>
<td></td>
</tr>
<tr>
<td>in Europe, 121</td>
<td></td>
</tr>
<tr>
<td>for HF, 232–4</td>
<td></td>
</tr>
<tr>
<td>for hypertension, 222–3</td>
<td></td>
</tr>
<tr>
<td>in Italy, 125–6</td>
<td></td>
</tr>
<tr>
<td>NIH and, 121</td>
<td></td>
</tr>
<tr>
<td>Physiological Society and, 122–5</td>
<td></td>
</tr>
<tr>
<td>toxicology and, 306–7, 314</td>
<td></td>
</tr>
<tr>
<td>wasting in, 124</td>
<td></td>
</tr>
<tr>
<td>ANN. See artificial neural network</td>
<td></td>
</tr>
<tr>
<td>annexin, 66</td>
<td></td>
</tr>
<tr>
<td>ANOVA. See analysis of variance</td>
<td></td>
</tr>
<tr>
<td>antegrin, 8</td>
<td></td>
</tr>
<tr>
<td>anterior cingulate gyrus (ACG), 260, 262</td>
<td></td>
</tr>
<tr>
<td>antianxiety agents, 252</td>
<td></td>
</tr>
<tr>
<td>antibiotics, 178</td>
<td></td>
</tr>
<tr>
<td>antibody microarrays, 51–2</td>
<td></td>
</tr>
<tr>
<td>anticoagulants, 28, 80, 162–3</td>
<td></td>
</tr>
<tr>
<td>anticonvulsants, 252</td>
<td></td>
</tr>
<tr>
<td>antidepressants, 252</td>
<td></td>
</tr>
<tr>
<td>antipsychotic drugs, 252, 266–7</td>
<td></td>
</tr>
<tr>
<td>antisense technology, 8</td>
<td></td>
</tr>
<tr>
<td>antitumor effect, 277</td>
<td></td>
</tr>
<tr>
<td>anxiety disorders, 251</td>
<td></td>
</tr>
<tr>
<td>APA. See American Physiological Association</td>
<td></td>
</tr>
<tr>
<td>ApoB-CETP transgenic mice, 230</td>
<td></td>
</tr>
<tr>
<td>ApoE*3-Leiden knockout mice, 230</td>
<td></td>
</tr>
<tr>
<td>ApoE knockout mice, 230</td>
<td></td>
</tr>
<tr>
<td>APRI. See AST-to-platelet ratio index</td>
<td></td>
</tr>
<tr>
<td>APS. See adenosine 5’ phosphosulfate</td>
<td></td>
</tr>
<tr>
<td>apyrase, 36–7</td>
<td></td>
</tr>
<tr>
<td>area under the curve (AUC), 212–13</td>
<td></td>
</tr>
<tr>
<td>artificial neural network (ANN), 210, 211–12</td>
<td></td>
</tr>
<tr>
<td>artificial organs, 118, 119</td>
<td></td>
</tr>
<tr>
<td>ASAT, 160</td>
<td></td>
</tr>
<tr>
<td>Asian populations, 87</td>
<td></td>
</tr>
<tr>
<td>ASOH. See allele-specific oligonucleotide hybridization</td>
<td></td>
</tr>
<tr>
<td>aspirin, 161–2, 304</td>
<td></td>
</tr>
<tr>
<td>Association of the British Pharmaceutical Industry (ABPI), 317–8</td>
<td></td>
</tr>
<tr>
<td>Association of the Research-Based Pharmaceutical Companies in Germany, 317–8</td>
<td></td>
</tr>
<tr>
<td>AST-to-platelet ratio index (APRI), 217</td>
<td></td>
</tr>
<tr>
<td>Athero-Express study, 107</td>
<td></td>
</tr>
<tr>
<td>animal studies for, 228–31</td>
<td></td>
</tr>
<tr>
<td>collagen and, 225</td>
<td></td>
</tr>
<tr>
<td>CRP and, 198</td>
<td></td>
</tr>
<tr>
<td>imaging for, 202–5, 226–8, 229</td>
<td></td>
</tr>
<tr>
<td>macrophages and, 225</td>
<td></td>
</tr>
<tr>
<td>MRI of, 246–7</td>
<td></td>
</tr>
<tr>
<td>ATP sulfurylase, 36–7</td>
<td></td>
</tr>
<tr>
<td>atypical antipsychotics, 266</td>
<td></td>
</tr>
<tr>
<td>AUC. See area under the curve</td>
<td></td>
</tr>
<tr>
<td>AVANTRA Biomarker Workstation, 146</td>
<td></td>
</tr>
<tr>
<td>Avastin, 285–6</td>
<td></td>
</tr>
<tr>
<td>Ayurveda medicine, 163–4</td>
<td></td>
</tr>
<tr>
<td>azapropazone, 87</td>
<td></td>
</tr>
<tr>
<td>azathioprine, 117</td>
<td></td>
</tr>
<tr>
<td>B2-microglobulin, 316</td>
<td></td>
</tr>
<tr>
<td>bacofoen, 156</td>
<td></td>
</tr>
<tr>
<td>Barnard, Christiaan, 117–18</td>
<td></td>
</tr>
<tr>
<td>Baronio, Giuseppe, 115</td>
<td></td>
</tr>
<tr>
<td>basic fibroblast growth factors (bFGF), 236</td>
<td></td>
</tr>
<tr>
<td>Bayesian probability, 337</td>
<td></td>
</tr>
<tr>
<td>B cell leukemia or lymphoma, 138</td>
<td></td>
</tr>
<tr>
<td>bcl-2 gene, 138</td>
<td></td>
</tr>
<tr>
<td>BCRab1 (Imatinib), 8</td>
<td></td>
</tr>
<tr>
<td>BD Cytometric Bead Array, 142–4</td>
<td></td>
</tr>
<tr>
<td>BeadArray, 39</td>
<td></td>
</tr>
</tbody>
</table>
Index

bead-based arrays, 144
bead-based assays, 142–4
BeadChip, 40–1
bedside devices, 145–6
Behavioral Toxicology Society, 317–8
Bernard, Claude, 113–14
Bert, Paul, 115
beta-blockers, 83–5
for HF , 80
for hypertension, 80
Betacell mass, 246
bFGF. See basic fibroblast growth factors
bias, selection, 338
Bigger, Samuel, 115
biobanking research, 104
bioinformatics, 103, 208
biological models, 342–7
PD and, 342–3
PK and, 343–7
biological power, 45
biological profile, 301
biomarker(s), 2, 9, 175–268
for ACS, 213–15
for atherosclerosis, 108, 198, 225–8
biostatistics and, 339–42
brain, 257–9
for breast cancer, 212–13
for cancer, 191–3
for cardiovascular disease, 213, 234
classes of, 180–90, 181–2, 189–200
for depression, 178
development of, 22, 190–7
for diabetes, 155
diagnostic platforms for, 216
discovery of, 23
efficacy and, 178
in genomics, for major depressive disorders, 155
grading score for, 171
for HF , 231–4
for hypertension, 215, 220–5
known valid, 195, 199
labeling and, 185
for LDL-cholesterol, 176, 179
for liver fibrosis, 217
monoclonal antibodies and, 23–4
for nephrotoxicity, 48
number-needed-to-screen analyses and, 191
“omics” technologies and, 35
for oncology, 235–9
for ovarian cancer, 209–12
precision and, 191
predictivity classification of, 199–202, 200–4
probable valid, 195, 199
for prostate carcinoma, 22
for psychiatry, 251–68
reference limits and, 191
reliability and, 191
ROC and, 191
for schizophrenia, 178, 256–7
sensitivity and, 191
standardization for, 25–7
surrogate endpoints and, 184
toxicology and, 316–7
valid, 186–9, 194–5, 199
validation of, 25
biomarker amplification cascade, 24
Biomarker Collaborative Research and Development Agreement (Biomarker CRADA), 48
Biomarker CRADA. See Biomarker Collaborative Research and Development Agreement
biomarker panels, 199, 206–18
biomarker pipeline, 31
Biomarkers Definitions Working Group, 181, 182–8
biomaterials, 126–7
BioPrint, 322
biopsies, 238–9
biostatistics, 327–48
biomarkers and, 339–42
biotin, 138
bisphosphonates, 56
bivalirudin, 162–3
bladder neck, 133
blockbuster concept, 170
blood-brain barrier, 80
blood glucose, 183
blood pressure (BP), 220
 in animal studies, 222
 PK or PD for, 222
 as surrogate endpoint, 183
blood urea nitrogen (BUN), 149–50, 152, 154
 BNP. See B-type natriuretic peptide
bone marrow, 68
Boswellia serrata, 164
boswellic acid, 164
BP. See blood pressure
brain, 253
 biomarkers of, 257–9
Brazil, Russia, India, and China (BRIC), 14
breast cancer, 46–7, 87–8, 138, 212–13
 BRIC. See Brazil, Russia, India, and China
British Toxicology Society, 317–8
B-type natriuretic peptide (BNP), 213–15, 232
 BUN. See blood urea nitrogen
bupropion, 350–2
CA15–3, 209
CA72–4, 209, 210
CA125, 209, 210, 211–12
Calbindin-D 28 kDa, 52
calcium, 52
cancer. See also oncology; specific diseases
 biomarkers for, 191–3
 drug therapy for, 87–91
 microarrays for, 65
 screening for, 209
 surrogate endpoint for, 183
 types of, 279
 vaccines for, cellular
 therapies for, 61–2
 cannabis, 132
 cardiac ischemia, 59
 cardiac troponins, 27
 cardiac valve replacement, 128
 See also atherosclerosis; heart failure; hypertension
biomarkers for, 213, 234
 imaging for, 245
 screening for, 209
 carotid endarterectomy, 108
 Carrel, Alexis, 115–16
 CART. See classification and regression trees
carvedilol, 84
caspase-1, 233
catechol-O-methyltransferase (COMT), 264
 CATIE trial. See Clinical Antipsychotic Treatment Intervention Effectiveness trial
 CCD sensors, 37
 CD4+ T cells, 69–70
 CD8+ T cells, 69–70
 CD34+, 68, 69, 70, 74
 CD80, 70
 CD86, 70
 CD133+, 70–2, 74
 CD133[53], 69
cDNA microarrays, 43
celecoxib, 87
cell cultures, 2
cell mobilization, 59
 cellular therapies
 for cancer vaccines, 61–2
 in vivo function and, 63
 potency analysis of, 59–75
 61–3
 standards for, 60
 Centers for Disease Control and Prevention, 350
 Centre for Medicines Research International (CMR), 317–8
cerebral death, 118
cerebrospinal fluid, 80
 CETP. See cholesteryl ester transfer protein
 CETP-inhibitor, 178
cetuximab, 279
 “Challenge and Opportunity on the Critical Path to New
Medical Products," 12, 151.
See also Critical Path Initiative
chemical tractability, 170
ChemIDPlus, 324
chemogenomics, 46
chemotherapy, 46–7, 59
CHF. See congestive heart failure
chlorpromazine, 160
cholesterol-fed New Zealand white rabbit, 229
cholesterol ester transfer protein (CETP), 353
chromosomal aberrations, 36, 39
chronic obstructive pulmonary disease (COPD), 169
cirrhosis, 217
cisplatin, 47, 149
citalopram, 82
c-kit, 69, 140
c-Kit pharmDx, 140
CK-MB, 214
classification and regression trees (CART), 209, 216
clinical and translational science awards (CTSA), 12
Clinical Antipsychotic Treatment Intervention Effectiveness trial (CATIE trial), 252
clinical association, 27–9
clinical benefit, 27–9
clinical endpoints, 182, 199
clinical practice, 29–30
Clinical Trials in Organ Transplantation program (CTOT program), 196
clopidogrel, 162
clustering, 316
CMR. See Centre for Medicines Research International
CMV. See cytomegalovirus coefficient of variation (CV%), 27
cohort study, 93
collagen, 128, 225
colorectal cancer, 288
competitive ELISA, 142
computed tomography (CT), 228, 242, 245–8
photon emission, 107
COMT. See catechol-O-methyltransferase
concentration-time profile, 343
confidentiality, 154
confounders, 104
congestive heart failure (CHF), 214, 215–24
consortia, 153–4
Consortium for Resourcing and Evaluating AMS Microdosing (CREAM), 293
continuous performance test (CPT), 262
contractibility, 130
Convention of the European Council ETS, 121
Coomassie blue, 48
cost-benefit ratio, 92
cost-effectiveness, 9
Cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study trial (CUTLASS trial), 252
covariates, 331
C-Path Institute, 151, 154
CPT. See continuous performance test CRADAs. See cooperative R&D agreements
C-reactive protein (CRP), 183, 197, 198, 213–15
CREAM. See Consortium for Resourcing and Evaluating AMS Microdosing
creolest, 118
Creutzfeldt-Jacob disease, 52–3
Crigler-Najjar syndrome, 91
Critical Path Initiative, 12, 13, 151. See also “Challenge and Opportunity on the Critical Path to New Medical Products”

Crohn’s disease, 89
cross-over design, 334
cross-species validation, 137
CRP. See C-reactive protein
Cruelty to Animals Act, 121
CT. See computed tomography
CTOT program. See Clinical Trials in Organ Transplantation program
CTSA. See clinical and translational science awards
CUTLASS trial. See Cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study trial
CV%. See coefficient of variation
CXCL12, 69
CXCR4, 69
Cyclosporin A, 52
cyclosporine, 118
CYP2C9, 80, 85
CYP2D6, 80, 81–3, 82
cystatin C, 316
6-cystein immunoglobulin-like domain, 148
cytomegalovirus (CMV), 71
cytomics, 19
cytotoxic T cells, 66
cytotoxicity assays, 63–4
Dahl salt-sensitive rat, 223
Dausset, Jean, 117
DCs. See dendritic cells
deceleration time, 232
Declaration of Helsinki, 121–2
DECODE consortium, 169
deductive strategy, 24
De Humani Corporis Fabbrica (Vesalio), 112–13
dendritic arborization, 257
dendritic cells (DCs), 66, 69–73
deoxynucleotide triphosphates (dNTPs), 37
depression, 81–3, 155, 178, 251
DEREK, 324
deviance, 331
de Vries, William, 118
DIA. See Drug Information Association
diabetes, 155
diabetes mellitus, 162, 183
diagnostic platforms, 31, 216
diagnostic research, 28
Diamandis, Eleftherios P., 21
diclofenac, 87
DIGE. See fluorescence 2D difference gel electrophoresis
Digitalis lanata, 161
digoxigenin, 138
digoxin, 161
dihydropyrimidine dehydrogenase (DPD), 89–91, 90
Directive 86/609, 125
discovery, 4, 207
of biomarkers, 23–4
in pharmacogenomics, 46
toxicology and, 318–19
disease association genes, 8
DLT. See dose-limiting toxicity
DMPK. See drug metabolism and pharmacokinetics
DNA copy numbers, 36
DNA polymerase, 36–7
DNA rearrangements, 36, 39
dNTPs. See deoxynucleotide triphosphates
DOCA-salt rat, 223
dopamine, 350–2
dopamine- and CAMP-regulated phosphoprotein DARPP-32 (PP1R1B), 265
dopamine receptor D2 (DRD2), 264
dopaminergic neurotransmission, 256
dose-limiting toxicity (DLT), 281, 294–84
dose-finding studies, 172
dose-response relationship, 304–5
dosing. See also specific dosing regimens
 AUC and, 295
 in early clinical trial design, 280–2
 PK and, 281
 repeated, 295–6, 298–2
toxicity from, 301–2
DPD. See dihydropyrimidine dehydrogenase
DRD2. See dopamine receptor D2
drugability, 166
drug abuse, tests for, 146
drug-induced liver injury, predictability of, 56
Drug Information Association (DIA), 317–8
drug metabolism and pharmacokinetics (DMPK), 172
drug metabolizing enzymes, 80
drug-response phenotype, 93
drug transporters, 80
DSSTox, 324
Dunnett, C. W., 338
duration of exposure, toxicology and, 303
dynamic arrays, 144–5
early clinical trial design, 277–98
dosing in, 280–2
endpoints for, 283–4
stopping rules for, 282–3
Early Detection Research Network (EDRN), 22, 196
EBV. See Epstein-Barr virus
echocardiography, 221–2, 232
Economic European Community (EEC), 125
ECVAM. See European Centre for Validation of Alternative Methods
ED_{50}, 343
EDRN. See Early Detection Research Network
EEC. See Economic European Community
efficacy, 13, 178
FDA and, 183
prediction, 178
EFPIA. See European Federation of Pharmaceutical Industry and Associations
EGF. See epidermal growth factor
EGFR. See epidermal growth factor receptor
18F-FDG, 245
eINdS. See investigational new drugs
electrocardiogram changes, 173
electrochemiluminescence-based assays, 144
Electro Spray Interfaces (ESI), 54
ELISA. See enzyme-linked immunosorbent assay
ELISPOT. See enzyme-linked immunosorbent spot assay
EM. See extensive metabolizer
embryonic stem cells, 66
EMEA. See European Medicines Agency
emPCR. See emulsion-based clonal amplification
eulsion-based clonal amplification (emPCR), 37
encainide, 183
endoxifen. See 4-hydroxy-N-desmethyl tamoxifen
endpoints, 283–4
clinical, 182, 199
surrogate, 182–3, 184, 199
enzyme-linked immunosorbent assay (ELISA), 63–4, 141–2
for ovarian cancer, 211
enzyme-linked immunosorbent spot assay (ELISPOT), 63–4
EORTC. See European Organization for the Treatment of Cancer
epidemics, 112
EpiDerm, 314
epidermal growth factor (EGF), 237
epidermal growth factor receptor (EGFR), 237, 279
epigenetics, 39–43
EPISKIN, 314
Epstein-Barr virus (EBV), 71
ER. See estrogen receptor
erectile dysfunction, 159–60
error probabilities, 336
erythroid, 68
ESI. See Electro Spray Interfaces
esomeprazole, 85–7
estrogen receptor (ER), 87–8
ESWL, 132
ethics, 119–21
ETS. See European Teratology Society
EUFEST. See European First Episode Schizophrenia Trial
European Centre for Validation of Alternative Methods (ECVAM), 317–8
European Federation of Pharmaceutical Industry and Associations (EFPIA), 154
European First Episode Schizophrenia Trial (EUFEST), 252
European Medicines Agency (EMEA), 152, 154–5
European Organization for the Treatment of Cancer (EORTC), 13
European Societies of Toxicology, 317–8
European Teratology Society (ETS), 317–8
Eurotox Association of European Toxicologists, 317–8
exenatide, 162
exendin-4, 162
experimental investigational new drugs (eINDs), 10, 159
exploitation, 167
exploratory statistics, 329
extensive metabolizer (EM), 81
ex vivo tissue engineering, 126
Fabrizio, Girolamo, 112–13
facilitated serendipity, 160
false discovery rate (FDR), 339
familywise error rate (FWER), 338
Fas, flow cytometry of, 66
FDA. See Food and Drug Administration
FDG-PET. See fluoro-D-glucose PET
FDR. See false discovery rate
ferrets, 157
fetal tissue, 129
fibroblasts, 225
Fibrotest, 217
fibrous cap, 106
FISH. See fluorescent ISH
FL. See follicular lymphoma
FLAP. See leukotriene A4 hydrolase
flucainide, 183
Fleming, Alexander, 15
flow cytometry, 63–4, 66
Fluidigm, 144–5
fluorescence 2D difference gel electrophoresis (DIGE), 49–50
fluorescent ISH (FISH), 137, 138
fluoro-D-glucose PET (FDG-PET), 228, 245, 248
5-fluorouracil (5-FU), 89–91
fluoxetine, 82
fluphenazine, 266
flurbiprofen, 87
fluvoxamine, 82
fMRI. See functional magnetic resonance imaging
FNIH. See Foundation for the National Institutes of Health
follicular lymphoma (FL), 139
Food and Drug Administration (FDA), 12, 25–7, 151, 183, 290, 317–8
CRADA and, 152–3
labeling and, 185
PhRMA Biomarker Consortium and, 155
renal biomarkers and, 152
valid biomarkers from, 186–9
VGDS, 152
Forns, 217
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation for the National Institutes of Health (FNIH)</td>
<td>155</td>
</tr>
<tr>
<td>Fourier transform ion cyclotron resonance (FT-ICR)</td>
<td>54</td>
</tr>
<tr>
<td>Framingham Heart Study, 101–2</td>
<td></td>
</tr>
<tr>
<td>FT-ICR. See Fourier transform ion cyclotron resonance</td>
<td></td>
</tr>
<tr>
<td>5-FU. See 5-fluorouracil</td>
<td></td>
</tr>
<tr>
<td>functional genomics, 8</td>
<td></td>
</tr>
<tr>
<td>functional magnetic resonance imaging (fMRI), 259</td>
<td></td>
</tr>
<tr>
<td>FWER. See familywise error rate</td>
<td></td>
</tr>
<tr>
<td>GABA<sub>2</sub> receptor agonism.</td>
<td></td>
</tr>
<tr>
<td>Galen of Pergam, 112</td>
<td></td>
</tr>
<tr>
<td>GAM. See gastric acellular matrix</td>
<td></td>
</tr>
<tr>
<td>gamma-aminobutiric acid receptor type B agonism. See baclofen</td>
<td></td>
</tr>
<tr>
<td>gamma cameras, 243</td>
<td></td>
</tr>
<tr>
<td>Ganesha, 114</td>
<td></td>
</tr>
<tr>
<td>gastric acellular matrix (GAM), 128</td>
<td></td>
</tr>
<tr>
<td>gastroesophageal reflux disease (GERD), 86</td>
<td></td>
</tr>
<tr>
<td>gastrointestinal apparatus, 131–2</td>
<td></td>
</tr>
<tr>
<td>gastrointestinal stromal tumors (GIST), 140</td>
<td></td>
</tr>
<tr>
<td>gastroparesis, idiopathic, 132</td>
<td></td>
</tr>
<tr>
<td>GCLP. See good clinical laboratory practice</td>
<td></td>
</tr>
<tr>
<td>G-CSF. See granulocyte colony-stimulating factor</td>
<td></td>
</tr>
<tr>
<td>gemcitabine, 278</td>
<td></td>
</tr>
<tr>
<td>GeneChip, 39</td>
<td></td>
</tr>
<tr>
<td>gene expression arrays, 42, 46, 65–6</td>
<td></td>
</tr>
<tr>
<td>Genentech, 14</td>
<td></td>
</tr>
<tr>
<td>gene therapy, 59</td>
<td></td>
</tr>
<tr>
<td>genetics, 8, 36–9</td>
<td></td>
</tr>
<tr>
<td>psychiatry and, 255–6</td>
<td></td>
</tr>
<tr>
<td>schizophrenia and, imaging for, 263–6</td>
<td></td>
</tr>
<tr>
<td>genome-wide association studies, 255</td>
<td></td>
</tr>
<tr>
<td>genomics, 18, 42–3</td>
<td></td>
</tr>
<tr>
<td>biomarkers in, for major depressive disorders, 155</td>
<td></td>
</tr>
<tr>
<td>microarrays and, 43</td>
<td></td>
</tr>
<tr>
<td>for oncology, 46</td>
<td></td>
</tr>
<tr>
<td>gentamycin, 47</td>
<td></td>
</tr>
<tr>
<td>GERD. See gastroesophageal reflux disease</td>
<td></td>
</tr>
<tr>
<td>Gilbert’s syndrome, 91</td>
<td></td>
</tr>
<tr>
<td>GIST. See gastrointestinal stromal tumors</td>
<td></td>
</tr>
<tr>
<td>glaucoma, 183</td>
<td></td>
</tr>
<tr>
<td>Gleevec. See imatinib mesylate</td>
<td></td>
</tr>
<tr>
<td>GLP. See good laboratory practice</td>
<td></td>
</tr>
<tr>
<td>GLP-1. See glucagons-like peptide type 1</td>
<td></td>
</tr>
<tr>
<td>glucagons-like peptide type 1 (GLP-1), 162</td>
<td></td>
</tr>
<tr>
<td>GM. See gray matter</td>
<td></td>
</tr>
<tr>
<td>GM-CSF. See granulocyte-macrophage colony-stimulating factor</td>
<td></td>
</tr>
<tr>
<td>GMP. See good manufactory product</td>
<td></td>
</tr>
<tr>
<td>GoldenGate Assay, 39, 40, 41–4</td>
<td></td>
</tr>
<tr>
<td>good clinical laboratory practice (GCLP), 239</td>
<td></td>
</tr>
<tr>
<td>good laboratory practice (GLP), 313</td>
<td></td>
</tr>
<tr>
<td>good manufactory product (GMP), 60</td>
<td></td>
</tr>
<tr>
<td>goodness of fit, 331</td>
<td></td>
</tr>
<tr>
<td>governance, 154</td>
<td></td>
</tr>
<tr>
<td>graded dose-response relationship, 305, 306–7</td>
<td></td>
</tr>
<tr>
<td>granulocyte colony-stimulating factor (G-CSF), 68, 70–2</td>
<td></td>
</tr>
<tr>
<td>miRNA for, 74</td>
<td></td>
</tr>
<tr>
<td>granulocyte-macrophage colony-stimulating factor (GM-CSF), 70, 72</td>
<td></td>
</tr>
<tr>
<td>gray matter (GM), 258</td>
<td></td>
</tr>
<tr>
<td>Grb2, 237</td>
<td></td>
</tr>
<tr>
<td>grepafloxacin, 178</td>
<td></td>
</tr>
<tr>
<td>groove cell, 144</td>
<td></td>
</tr>
<tr>
<td>GS FLX, 37</td>
<td></td>
</tr>
<tr>
<td>γGT, 217</td>
<td></td>
</tr>
<tr>
<td>“Guidance for Industry, Investigators, and Reviewers – Exploratory IND Studies” (FDA), 290, 315</td>
<td></td>
</tr>
<tr>
<td>“Guide for the Care and Use of Laboratory Animals,” 121</td>
<td></td>
</tr>
<tr>
<td>Index Item</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Guthrie, Charles, 115–16</td>
<td></td>
</tr>
<tr>
<td>GVKBio, 322</td>
<td></td>
</tr>
<tr>
<td>Haber, Fritz, 303</td>
<td></td>
</tr>
<tr>
<td>haloperidol, 266, 267</td>
<td></td>
</tr>
<tr>
<td>HapMap project, 39</td>
<td></td>
</tr>
<tr>
<td>haptoglobin, 217</td>
<td></td>
</tr>
<tr>
<td>Hardy, James, 117</td>
<td></td>
</tr>
<tr>
<td>Harvey, William, 112–13</td>
<td></td>
</tr>
<tr>
<td>HbA1C. See hemoglobin A1C</td>
<td></td>
</tr>
<tr>
<td>HCV. See hepatitis C virus</td>
<td></td>
</tr>
<tr>
<td>HDL-cholesterol, 178, 188–90, 352–7</td>
<td></td>
</tr>
<tr>
<td>heart failure (HF)</td>
<td></td>
</tr>
<tr>
<td>animal studies for, 232–4</td>
<td></td>
</tr>
<tr>
<td>beta-blockers for, 80</td>
<td></td>
</tr>
<tr>
<td>biomarkers for, 231–4</td>
<td></td>
</tr>
<tr>
<td>models for, 233–4</td>
<td></td>
</tr>
<tr>
<td>heating the pot, 160</td>
<td></td>
</tr>
<tr>
<td>hEB. See human embryoid bodies</td>
<td></td>
</tr>
<tr>
<td>HED. See human equivalent dose</td>
<td></td>
</tr>
<tr>
<td>HEK 293 cells. See human embryonic kidney 293 cells</td>
<td></td>
</tr>
<tr>
<td>Helicobacter pylori, 85–7, 86</td>
<td></td>
</tr>
<tr>
<td>elimination of, 86</td>
<td></td>
</tr>
<tr>
<td>hematopoietic progenitor cells (HPCs), 59</td>
<td></td>
</tr>
<tr>
<td>hematopoietic stem cells (HSCs), 63, 66, 70–2</td>
<td></td>
</tr>
<tr>
<td>for cardiac ischemia, 59</td>
<td></td>
</tr>
<tr>
<td>miRNA for, 74</td>
<td></td>
</tr>
<tr>
<td>potency analysis of, 67–9</td>
<td></td>
</tr>
<tr>
<td>for transplantation, 59</td>
<td></td>
</tr>
<tr>
<td>hemoglobin A,C (HbA,C), 342–3</td>
<td></td>
</tr>
<tr>
<td>hepatitis C virus (HCV), 217</td>
<td></td>
</tr>
<tr>
<td>Her2/neu, 8, 140, 185</td>
<td></td>
</tr>
<tr>
<td>breast cancer and, 138</td>
<td></td>
</tr>
<tr>
<td>herbal medicines, 156</td>
<td></td>
</tr>
<tr>
<td>Herceptest, 138, 140</td>
<td></td>
</tr>
<tr>
<td>Herceptin, 138, 140</td>
<td></td>
</tr>
<tr>
<td>hERG channel effects. See human ether-a-go-go related gene channel effects.</td>
<td></td>
</tr>
<tr>
<td>hESCs. See human embryonic stem cells</td>
<td></td>
</tr>
<tr>
<td>HF. See heart failure</td>
<td></td>
</tr>
<tr>
<td>Hgb A1c, 183</td>
<td></td>
</tr>
<tr>
<td>high-renin hypertension, 220–1</td>
<td></td>
</tr>
<tr>
<td>high-sensitivity CRP, 175</td>
<td></td>
</tr>
<tr>
<td>high-throughput immunoassay, 142–5</td>
<td></td>
</tr>
<tr>
<td>high-throughput screening, 101</td>
<td></td>
</tr>
<tr>
<td>hippocampal volume, 258</td>
<td></td>
</tr>
<tr>
<td>Hippocrates, 105, 119</td>
<td></td>
</tr>
<tr>
<td>hirudin, 162–3</td>
<td></td>
</tr>
<tr>
<td>HIV particle concentration, 183</td>
<td></td>
</tr>
<tr>
<td>HLA. See human leukocyte antigen</td>
<td></td>
</tr>
<tr>
<td>Hoffmann, Felix, 161–2</td>
<td></td>
</tr>
<tr>
<td>Hortin, Glen, 26</td>
<td></td>
</tr>
<tr>
<td>HPCs. See hematopoietic progenitor cells</td>
<td></td>
</tr>
<tr>
<td>HSCs. See hematopoietic stem cells</td>
<td></td>
</tr>
<tr>
<td>5-HTTLPR. See serotonin transporter length polymorphism</td>
<td></td>
</tr>
<tr>
<td>human embryoid bodies (hEB), 67</td>
<td></td>
</tr>
<tr>
<td>human embryonic kidney (HEK) 293 cells</td>
<td></td>
</tr>
<tr>
<td>human embryonic stem cells (hESCs), 67</td>
<td></td>
</tr>
<tr>
<td>human equivalent dose (HED), 281, 295</td>
<td></td>
</tr>
<tr>
<td>human ether-a-go-go related gene (hERG) channel effects, 173, 322–3</td>
<td></td>
</tr>
<tr>
<td>human leukocyte antigen (HLA), 71, 117</td>
<td></td>
</tr>
<tr>
<td>Hunter, John, 115</td>
<td></td>
</tr>
<tr>
<td>HUPO. See Human Proteome Organization</td>
<td></td>
</tr>
<tr>
<td>hybridization, 36, 37–9</td>
<td></td>
</tr>
<tr>
<td>α-hydroxylation, 83–4</td>
<td></td>
</tr>
<tr>
<td>4-hydroxy-N-desmethyl tamoxifen (endoxifen), 87–8</td>
<td></td>
</tr>
<tr>
<td>4-hydroxy tamoxifen (4-OH-TAM), 87–8</td>
<td></td>
</tr>
<tr>
<td>hypertension, 164, 215, 220</td>
<td></td>
</tr>
<tr>
<td>animal studies for, 222–3</td>
<td></td>
</tr>
<tr>
<td>beta-blockers for, 80</td>
<td></td>
</tr>
<tr>
<td>high-renin, 220–1</td>
<td></td>
</tr>
</tbody>
</table>
Index

low-renin, 220–1
models for, 224–9
as risk factor, 188
US for, 223

ibandronate, 56
ibuprofen, 87
ICAM-1, 70
ICAT. See isotope-coded affinity tagging
ICCVAM. See Interagency Coordinating Committee on the Validation of Alternative Methods
ICH. See International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use
idiopathic gastroparesis, 132
IgA, 52
IgH. See immunoglobulin heavy chain
IHC. See immunohistochemistry
IL-2. See interleukin-2
IL-4. See interleukin-4
IL-7, 59
IL-10. See interleukin-10
Illumina, 37–53, 39, 40–1, 44–5, 144
ILLUSTRATE trial, 352–7, 355
IM. See intermediate metabolizer imaging, 240. See also specific modalities
for atherosclerosis, 202–5, 226–8, 229
for cardiovascular disease, 245
for neuroscience, 248–9
for obesity, 245–8
for oncology, 248
for schizophrenia, 256–7
genetics of, 263–6
tissue biobanks and, 106–7
Imatinib. See BCRabl
imatinib mesylate (Gleevec), 140
IMI. See Innovative Medicines Initiative
imipramine, 160
immune therapies, 63
immunoassays, 140–1
immunoglobulin heavy chain (IgH), 138
immunohistochemistry (IHC), 48, 139–40, 149
immunosuppressive chemotherapy, 59
IMT. See intima-media thickness
IND. See investigational new drugs
indirect ELISA, 141–2
indium-111, 243
indomethacin, 87, 132–3
inductive strategy, 24
inferential statistics, 329
Infinium Assay, 39, 40–1
Infinium HD Human1M-Duo BeadChip, 39
inflammation, 197
inflammatory bowel disease, 164
influenza virus, 71
inherited variability, 78
in-licensing, 170
Innovative Medicines Initiative (IMI), 154–5, 268
iNOS, 233
in-process testing, 60
INR values, 85
in situ hybridization (ISH), 48, 137–8, 149
institutional committees for animal experimentation, 123
intellectual property, 154
Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), 317–8
interferon, 65
interferon-γ, 65
interleukin-2 (IL-2), 65
interleukin-4 (IL-4), 65, 70, 72
interleukin-10 (IL-10), 65
intermediate metabolizer (IM), 81
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), 311, 317–8
International Union of Toxicology (IUTOX), 317–8
intimal thickening, 105
intima-media thickness (IMT), 202–5, 222–44, 227
intraocular pressure, 183
intravascular ultrasound (IVUS), 106, 202–5 for atherosclerosis, 227 for cardiovascular disease, 245
Introduction à la médecine expérimentale (Bernard), 113–14
inverse serendipity, 160
investigational new drugs (IND) eINDs, 10, 159
MTD and, 291
PD and, 291
PK and, 291
POM and, 291 studies of, 289 toxicology and, 315 in vitro experiments, 63 for antibiotics, 178 bladder neck, 133 cell therapy and, 59 contractility and, 130 cytotoxicity assays as, 64 toxicology and, 301 ureter, 132–3
in vivo experiments, 178 cellular therapies and, 59, 63 potency analysis with, 63 proof of concept and, 181 tissue engineering, 126 toxicogenomics and, 47 iodine-123, 243
Index

labeling, 185
LAD. See left ascending coronary artery
LAKs. See leukocyte-activated killer cells
lansoprazole, 85–7
LC-MS. See liquid chromatography with mass spectroscopy
LC-MS-MS. See liquid chromatography with tandem mass spectrometry
LDA. See low-density array
LDL-cholesterol, 3, 188, 352–7
biomarkers for, 176, 179
as surrogate endpoint, 183
LDL-receptor knockout, 230
lead identification (LI), 4, 170
lead optimization (LO), 4, 170
left ascending coronary artery (LAD), 232
left ventricular hypertrophy (LVH), 221, 222–3
Leon hypertensive rat, 223
leukemia, 70, 138
leukocyte-activated killer cells (LAK), 59
leukopenia, 59
leukotriene A4 hydrolase (FLAP), 169, 179
luciferase, 36–7
luciferin, 36–7
luminal thrombosis, 105
Luminex, 142
luminography, 226
lung cancer
non-small cell (NSCLC), 155, 236
small cell, 65
LV ejection fraction, 232
LVH. See left ventricular hypertrophy
lymphoma, 65, 138
B cell, 138
FL, 139
MCL, 139
NHL, 138, 155
macrophage colony-stimulating factor (M-CSF), 209, 210
macrophages, 225
MAD. See maximum administered dose; multiple ascending dose
magnetic resonance imaging (MRI), 106–7, 202–5, 242–3
for atherosclerosis, 227–8, 246–7
for cardiovascular disease, 245
for obesity, 245–8
for schizophrenia, 258
liver toxicity, 155, 160
lizard venom, 162
LO. See lead optimization
localization, 137–42, 149
logistic regression (LR), 209, 216
longitudinal tissue biobanks, 102
long-term culture-initiating cells (LTC-ICs), 68
lornoxicam, 87
loss of heterozygosity, 39
lost to follow-up, 103
lot release testing, 60
low-density array (LDA), 43
Lower, Richard, 117
low-renin hypertension, 220–1
LR. See logistic regression
LTC-IC. See long-term culture-initiating cells
luciferase, 36–7
luciferin, 36–7
luminal thrombosis, 105
Luminex, 142
luminography, 226
lung cancer
non-small cell (NSCLC), 155, 236
small cell, 65
LV ejection fraction, 232
LVH. See left ventricular hypertrophy
lymphoma, 65, 138
B cell, 138
FL, 139
MCL, 139
NHL, 138, 155
macrophage colony-stimulating factor (M-CSF), 209, 210
macrophages, 225
MAD. See maximum administered dose; multiple ascending dose
magnetic resonance imaging (MRI), 106–7, 202–5, 242–3
for atherosclerosis, 227–8, 246–7
for cardiovascular disease, 245
for obesity, 245–8
for schizophrenia, 258

magnetic resonance spectroscopy (MRS), 243, 245–8
major depressive disorders, 155
MALDI-TOF. See matrix-assisted laser desorption ionization time of flight mass spectrometry
MammaPrint, 46
Manolio, Teri, 25
mantle cell lymphoma (MCL), 139
MAOA VNTR. See monoamine oxidase A variable number tandem repeat
MAQC. See MicroArray Quality Consortium
Mart I, 71
mass spectrometry, 19, 48, 206
mass-to-charge ratio peaks, 19
matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF), 49
MAX BIOCHIP, 146
maximum administered dose (MAD), 283
maximum recommended starting dose (MRSD), 281
maximum tolerated dose (MTD), 277, 283
IND and, 291
MCL. See mantle cell lymphoma
M-CSF. See macrophage colony-stimulating factor
measurands, 26
measurement
reliability in, 332
standards in, 333
validity in, 332
Medawar, Peter, 117
medical utility, 13
medicinal chemist, 322
Medicines and Healthcare Products Regulatory Agency, 317–8
mefenamic acid, 87
Mehendale, Harihara M., 304
melanoma, 65, 70
meloxicam, 87
mental illness, 251
mercury chloride, 47
mesenchymal stem cells (MSCs), 59, 66
MesoScale Discovery, 142
meta-analysis, 45, 254
Metabolic Profiler, 56–70
metabolomics, 19
metabolomics, 19, 53–7, 56
metformin, 342–3
methylation analysis, 40
methylcellulose, 68
methylenetetrahydrofolate reductase (MTHFR), 90
metoprolol, 83–4, 220
MI. See myocardial infarction
Michaelis-Menten equation, 342
microalbuminuria, 222
MicroArray Quality Consortium (MAQC), 45
microarrays, 39, 65
antibody, 51–2
cDNA, 43
genomics and, 43
oligonucleotide, 43, 138
protein, 51–3, 206
RPMA, 52
microdosing, 289, 298–2
AMS and, 293
predictability of, 293–4
PET and, 293, 294–5
predictability of, 295
microRNAs (miRNA), 73–5, 74–83
minimal residual disease (MRD), 89
mini-pigs, 314
Minoxidil, 8
miRNA. See microRNAs
mirtazapine, 82
missed phase II trial, 356
mixed discriminant analysis, 209
moclobemide, 82
molecular medicine, 35–57
monoamine oxidase A variable number tandem repeat (MAOA VNTR), 264
monoclonal antibodies, 8, 23–4, 139
mononuclear cells, 65
mood stabilizers, 252
Morgagni, Giambattista, 112–13
motor functioning, 260–1
mouse lymphoma assay, 323
MRD. See minimal residual disease
MRI. See magnetic resonance imaging
MRS. See magnetic resonance spectroscopy
MRSD. See maximum recommended starting dose
MSC. See mesenchymal stem cells
MS-MS. See tandem mass spectrometry
MTD. See maximum tolerated dose
MTHFR. See methylenetetrahydrofolate reductase
mucin domain, 148
MultiCASE, 324
multicenter trials, 94
multimodality imaging, 244–5
multiparametric datasets, 29
multiple ascending dose (MAD), 172
multiple sclerosis, 8
multiplicity, 337–9
Murine LD10, 280
Murray, Joseph, 117
mutant genes, 8
myeloid, 68
myeloid-derived DCs, 70
myelomeningocele, 128
myocardial infarction (MI), 128, 214, 215–24
myoglobin, 146
myotrophin, 233
N-acetylfelinine, 56
naproxen, 87
National Cancer Institute, 22
National Institutes of Health (NIH) animal studies and, 121
PhRMA Biomarker Consortium and, 155
Roadmap of, 11, 31
National Translational Cancer Research Network, 13
NCI Cancer Biomarker Project, 196
NE. See norepinephrine
neobladder, 128
nephrotoxicants, 47
nephrotoxicity, 48
nervous system, 128
neuroimaging, 256
neurodegenerative disease, 257
neurotransmitters, 265
New Zealand white (NZW) rabbits, 353
NHL. See non-Hodgkin’s lymphoma niche buster concept, 170
nicotine, 350–2
nicotine replacement therapy (NRT), 350–2, 351
NIH. See National Institutes of Health
NMR. See nuclear magnetic resonance spectroscopy
NOAEL. See no observed adverse effect dose level
Nobel Prize, 116
NOD. See nonobese diabetic
non-Hodgkin’s lymphoma (NHL), 138, 155
non-human primates, 314
non-inferiority trials, 336
NONMEM, 345
nonobese diabetic (NOD), 68
non-small cell lung cancer (NSCLC), 155, 236
nonspecific test batteries, 173
nonsteroidal anti-inflammatory drugs (NSAIDs), 87
no observed adverse effect dose level (NOAEL), 281, 295, 305
norepinephrine (NE), 132–3
bladder neck and, 133–43
normal alleles, 8
NRT. See nicotine replacement therapy
Index

NSAIDs. See nonsteroidal anti-inflammatory drugs
NSCLC. See non-small cell lung cancer
NT-proBNP, 232
nuclear magnetic resonance spectroscopy (NMR), 53
null hypothesis, 327
number-needed-to-screen analyses, biomarkers and, 191
NZW rabbits. See New Zealand white rabbits
obesity, imaging for, 245–8
OCT. See optical coherence tomography
odds ratio, 28, 94
O-demethylation, 83–4
OECD. See Organisation for Economic Co-Operation and Development
4-OH-TAM. See 4-hydroxy tamoxifen
olanzapine, 258, 267
oligonucleotide microarrays, 43, 138
Ollier, Léopold, 115
omeprazole, 85–7, 156
"omics," 18, 176, 190
clinical practice and, 29–30
datasets from, 29
in T2, 31
technologies, 35–57
biomarkers and, 35
oncology
biomarkers for, 235–9
drugs, success rate of, 6
genomics for, 46
imaging for, 248
mutant genes and, 8
PD for, 238
Oncotype DX, 46
1C2K. See 1-clip 2-kidney
1-clip 2-kidney (1C2K), 223
one-compartment model, 343
opium, 161
optical coherence tomography (OCT), 228
orbitrap, 54
Organisation for Economic Co-Operation and Development (OECD), 317–8
ORION. See outcome of rosuvastatin treatment on carotid artery atheroma: a magnetic resonance imaging observation
outcome of rosuvastatin treatment on carotid artery atheroma: a magnetic resonance imaging observation (ORION), 205
ovarian cancer
biomarkers for, 209–12
microarrays for, 65
serum in, 21
pain
scales for, 183
treatment for, 87
pantoprazole, 85–7
Paracelsus, 302
parallel group design, 333
parasitic diseases, 146
paroxetine, 82
partial agonists, 351
patents, 169
PathVysion, 138
patient recruitment, 25
PBLs. See peripheral blood leukocytes
PBMCs. See peripheral blood mononuclear cells
PBSCs. See peripheral blood stem cells
PD. See pharmacodynamics
PDGFR. See platelet derived growth factor receptor
penicillin, 15, 160
Pepe model, 192
peptidomics, 51
performance status, 279
peripheral blood leukocytes (PBLs), 70–2, 74
peripheral blood mononuclear cells (PBMCs), 72–4
DCs and, 70, 71–3
miRNA for, 74
peripheral blood stem cells (PBSCs), 68
personalized medicine, 9, 10, 18, 287–8
PET. See positron emission tomography
PET-CT, 245, 248
Pfam, 208
PFC. See prefrontal cortex
PGA. See polyglycolic acid
PGE1, 132–3
PGF2α, 132, 133
PGLA. See polylactic-co-glycolic acid
Pharmaceutical Research and Manufacturers of America (PhRMA), 155, 317–8
PhRMA Biomarker Consortium, 155
Physiological Society, 122–5
PicoTiterPlate, 37
Pien Ch’iao, 114
piroxicam, 87
PK. See pharmacokinetics
PK/PD modeling. See pharmacokinetic or pharmacodynamic modeling
PLA. See polyactic acid
placebo group, 334
plaque destabilization, 105
plaque formation, 105
plaque rupture, 105
plaque thrombosis, 105
plasmacytoid DCs, 70
platelet derived growth factor receptor (PDGFR), 238
PMs. See poor metabolizers
POC. See proof of concept
poly-3-hydroxybutyrate (PHB), 128
polyclonal antibodies, 139
polyglycolic acid (PGA), 127, 128
polylactic acid (PLA), 127
polylactic-co-glycolic acid (PGLA), 127
POM. See proof of mechanism
poor metabolizers (PM), 81
POP. See proof of principle portfolio, 6
PORT study. See Schizophrenia Patient Outcomes Research Team study
positron emission tomography (PET), 106–7, 202–5, 243–4, 246
for atherosclerosis, 228
fluoro-D-glucose (FDG)–PET
positron emission tomography (PET)
(Cont.)
for atherosclerosis, 228
for oncology, 248
microdosing, 294–5
predictability of, 295
microdosing and, 293
PET-CT
for cardiovascular disease, 245
for oncology, 248
potency analysis, 59, 61, 64–165, 65–6
for DCs, 69–73
of HSC, 67–9
miRNA as, 73–5
potency genes, 66
PPIs. See proton pump inhibitors
PP1R1B. See dopamine- and cAMP-
regulated phosphoprotein
DARPP-32
practice-based research, 32
precision, 27
accuracy and, 27
biomarkers and, 191
predictability, of drug-induced liver
injury, 56
predictive power, 337
Predictive Safety Testing Consortium (PSTC), 151, 154, 196, 316–7
C-Path Institute and, 154
predictive toxicology, 324
prefrontal cortex (PFC), 264–5
efficiency, 261
primary aldosteronism, 220–1
primary translation, 3
primates, 314
primum non nocere, 119
proarrhythmic effects, 173
probable valid biomarker, 195, 199
probe molecules, 8
product specifications, 60
proof of concept (POC), 170, 172,
176, 286
in vitro studies and, 181
proof of mechanism (POM), 170, 176,
284–5
IND and, 291
proof of principle (POP), 170, 172,
176, 285–6
prostaglandin inhibitors, 132
prostate cancer, 22, 65, 70, 192
prostate-specific antigen (PSA), 192,
193–4
protein chips, 206
protein microarrays, 51–3, 206
proteomics, 18, 19, 48–53, 63–4
in vitro assays, 63–4
pattern diagnostics, 24
recommended steps for, 29–61
ProtoArray, 51
proton pump inhibitors (PPIs), 85–7,
156, 157
PSA. See prostate-specific antigen
PSTC. See Predictive Safety Testing
Consortium
psychiatry, 81, 251–68
genetics and, 255–6
stigma in, 254–5
psychometric testing, 183
PubChem, 322
pyrosequencing, 36, 40
Q. See single-quadrupoles
QQQ. See triple quadrupoles
qRT-PCR. See quantitative RT-PCR
QSAR. See quantitative structure
activity relationship
QT interval prolongation, 173
quadrupoles, 53–5
“Quality of Scientific Literature: All
that Glitters Is Not Gold”
(Diamandis), 21
quantitative RT-PCR (qRT-PCR), 43
for IL-2, 65
for IL-10, 65
for interferon-γ, 65
quantitative structure activity
relationship (QSAR), 167
RAAS system. See renin-angiotensin-
alosterone system
rabeprazole, 85–7
radiochemistry, 249
Raf-1 kinase, 238
Raman spectroscopy, 106–7
randomized controlled clinical trial, 94
Ransohoff, David F., 21, 207
Ras/MAPK, 237
Rauwolfia, 164
RD. See recommended dose
R&D. See research and development recall antigen, 65, 71
receiver operating characteristic (ROC), 25, 28, 209, 340
biomarkers and, 191
for breast cancer, 212–13
for ovarian cancer, 211–12
for prostate cancer, 192
for PSA, 193–4
receptor tyrosine kinases (RTKs), 237
RECIST. See response evaluation criteria in solid tumors recommended dose (RD), 283
Reemtsma, Keith, 118
reference limits, 191
regenerative medicine, 130
regulatory toxicology, 309
reimbursement, 168
reliability, 21, 191, 332
renal biomarkers, 152
renal cell carcinoma, 65, 70
renal drugs, 9
R-enantiomer, 84
renin-angiotensin-aldosterone (RAAS) system, 220–1, 222–3
repeatability, 27
repeated dosing, 295–6, 298–2
reproducibility, 20, 27, 208
research and development (R&D), 4, 12
research pipeline, 31
reserpine, 164
residuals, 332
responder concentration, 9, 170
response evaluation criteria in solid tumors (RECIST), 248
result dissemination, 167
Reverdin, Jacques Louis, 115
reverse pharmacology, 8, 10, 156, 161–6, 165–8
reverse protein microarrays (RPMAs), 52
reverse transcription polymerase chain reaction (RT-PCR), 43–7, 46, 149
rheumatoid arthritis, 183
risk factors, 102, 188
in toxicology, 308–9
risk markers, 188–90
road map, 23
Roadmap, of NIH, 11, 31
ROC. See receiver operating characteristic
Rozman, Karl, 303
RPMAs. See reverse protein microarrays
RTKs. See receptor tyrosine kinases
RT-PCR. See reverse transcription polymerase chain reaction
SAD. See single ascending dose
SAEC. See Serious Adverse Event Consortium
SAEs. See serious adverse events
safety-directed drug design, 322–4
safety translation, 173, 178
salicylic acid, 161–2, 304
Salix alba, 161–2
salmonella reverse mutation, 323
sample sizes, 93
sandwich ELISA, 142
sandwich immunoassay, 144
Sanger DNA sequencing, 36
SAR. See structure-activity relationship
SAS PROC NL MIXED, 345
Scheffé, 338
schizophrenia, 2, 251
biomarkers for, 178, 256–7
genetics and, imaging for, 263–6
GM and, 258
imaging for, 256–7
schizophrenia (cont.)
MRI for, 258
stigma with, 254–5
Schizophrenia Patient Outcomes Research Team (PORT)
study, 254
Schöne, Georg, 116
SCID. See severe combined immunodeficiency
SDF-1, 69
secondary translation, 3
SELDI. See surface-enhanced laser desorption ionization
selection bias, 338
selective attention, 262–3
selective serotonin reuptake inhibitors (SSRIs), 82
sensitivity, 21, 191
sensory stimulation, 259
sequencing, 36, 37–9
serendipity, 5, 160
Serious Adverse Event Consortium (SAEC), 155
serious adverse events (SAEs), 155
serotonin transporter length polymorphism (5-HTTLPR), 264
sertraline, 82
serum
albumin in, 22
cardiac-originating proteins in, 24
in ovarian cancer, 21
serum creatinine, 149–50, 152, 154
serum proteomic profiling, 24, 207
7th Framework Program, 13
severe combined immunodeficiency (SCID), 68
shotgun proteomics, 49
SHR. See spontaneous hypertensive rat
shrinkage, 5
Shumway, Norman, 117
SHY. See statistical heterospectroscopy
sildenafil, 159–60
sine materia, 132
single ascending dose (SAD), 172
Single Molecule Real-Time DNA Sequencing (SMRT), 42
single nucleotide polymorphisms (SNPs), 36, 88–9, 194, 264
single photon emission computed tomography (SPECT), 202–5, 243
single-quadrupoles (Q), 54
skin, transplantation of, 127–8
small- and medium-sized enterprises (SMEs), 154
small cell lung cancer, 65
SMEs. See small- and medium-sized enterprises
smoking cessation, 350–2
SMRP. See soluble mesothelin-related protein
SMRT. See Single Molecule Real-Time DNA Sequencing
SN-38, 91
SNPs. See single nucleotide polymorphisms
Society of Toxicologic Pathologisty, 317–8
Society of Toxicology (SOT), 317–8
software, 45
soluble mesothelin-related protein (SMRP), 210
SOT. See Society of Toxicology
specificity, 21
SPECT. See single photon emission computed tomography
SpectrumGreen, 138
SpectrumOrange, 138
sphingosylphosphorylcholine, 131
spontaneous hypertensive rat (SHR), 169, 222–3
spots, 176
SP-SHR. See stroke-prone SHR
SSRIs. See selective serotonin reuptake inhibitors
standardization, 20
standards for biomarkers, 25–7
for cell therapy, 60
measurands and, 26
in measurement, 333
Standards for Reporting of Diagnostic Accuracy (STARD), 22
STARD. See Standards for Reporting of Diagnostic Accuracy
Starzl, Thomas, 117
statistical heterospectroscopy (SHY), 55
statistical model, 331
statistical power, 45
stem cells. See also hematopoietic progenitor cells
embryonic, 66
hESC, 67
MSC, 59, 66
PBSC, 68
therapeutic cloning and, 128–30
for transplantation, 119
Stevens-Johnson syndrome, 155
STG. See superior temporal gyrus
stigma, 254–5
stopping rules, 282–3
stratification, 195
striatal neurotransmitters, 265
stroke, 108
stroke-prone SHR (SP-SHR), 223
structure-activity relationship (SAR), 322
study design, 25
subset isolation, 59
Sulle forze elettriche nel movimento muscolare (Galvani), 113–14
sunitinib, VEGF and, 236–7
superior temporal gyrus (STG), 259
suprofen, 87
surface-enhanced laser desorption ionization (SELDI), 20
surrogate endpoints, 170, 182–3, 184, 199
susceptibility genes, 257
Swiss-Prot, 208
SYPRO Ruby, 48
systems biology, 101
T1, 31
T2, 31
“omics” in, 31
tachyarrhythmia, 132
tachygastria, 132
Tacrolimus, 52
Tagliacozzi, Gaspare, 115
tamoxifen, 47, 87–8
tandem mass spectrometry (MS-MS), 49
target discovery, 3
target identification and validation, 18–32
technetium-99m, 243
telithromycin, 178
tenoxicam, 87
Teratology Society, 317–8
test research, 28
tetanus toxin, 71
therapeutic cloning, 128–30
Thiersch, Carl, 115
thiopurine S-methyltransferase (TPMT), 88
thiopurines, 88–9
Thorough QT/QTc Study, 335
thrombospondin 1 (TSP1), 236
thymidylate synthase (TYMS), 90
TIA. See transischemic attacks
TIL. See tumor-infiltrating leukocytes
time-of-flight (TOF), 54
tiotropium, 169
TIRF. See total internal reflectometric fluorescence spectroscopy
tissue biobanks, 101–9
Athero-Express study, 107–9
atherosclerosis and, 105–6
imaging and, 106–7
luminal thrombosis and, 105
tissue biopsies, 238–9
tissue Doppler velocities, 232
tissue engineering
biomaterials for, 126–7
ex vivo, 126
in vivo, 126
for transplantation, 119
TLESR. See transient lower esophageal sphincter relaxations
TNFalpha, 164, 304
TOF. See time-of-flight
torcetrapib, 352–7
total internal reflectometric fluorescence spectroscopy (TIRF), 39
total protein, 316
toxicogenomics, 46, 47–8
in vivo findings and, 47
toxicological profile, 301
toxicology, 173,
299–326
animal studies and, 306–7, 314
biomarkers and, 316–7
discovery and, 318–19
duration of exposure and, 303
duration of exposure and, 303
hazards and, 308
IND and, 315
in vitro tests and, 301
REG and, 309
risk factors in, 308–9
TOXNET, 324
toxnet.nlm.nih.gov, 317–8
toxportal.com, 317–8
TPMT. See thiopurine S-methyltransferase
tramadol, 80
transcallosal glutamergic projections, 260
transcriptomics, 19
temporary lower esophageal sphincter relaxations (TLESR), 156–9
transischemic attacks (TIA), 108, 226
translational assessment, 167
translational blocks, 31
translational imaging, 240
translational pharmacogenetics, 78–94
translational profiling, 167
translational research, definition of, 30
translational science in medicine, definition of, 16
transmitral E/A-ratio, 232
transplantation, 114–21
artificial organs for, 118, 119
HSC for, 59
rejection in, 3, 117–8
cyclosporine for, 118
of skin, 127–8
stem cells for, 119
tissue engineering for, 119
trazosin, 8, 185
T regulatory cells, 59
trefoil factor-3, 316
Triage Cardiac Panel, 146
Triage MeterPlus, 146
Triage Parasite Panel, 146
Triage Tox Drug Screen, 146
tricyclic antidepressants, 80, 81, 82
triple quadrupoles (QQQ), 54
tropomycin, 233
troponin, 27, 146, 213–15, 233
trovafloxacin, 178
true to, 26–7
True Single Molecule Sequencing Technology (tSMSTM), 42
tSMSTM. See True Single Molecule Sequencing Technology
TSP1. See thrombospondin 1
Tukey, 338
tumor-infiltrating leukocytes (TIL), 59
tumor shrinkage, as surrogate endpoint, 183
2D PAGE. See two-dimensional polyacrylamide gel electrophoresis
two-compartment model, 343
two-dimensional polyacrylamide gel electrophoresis (2D PAGE), 48–9
TYMS. See thymidylate synthase
type I error, 327, 336
type II error, 336
UCB. See umbilical cord blood
UCSC Proteome Browser, 208
UGT. See uridine diphosphate gluturonosyltransferase
ulcer disease, 85–7
Ullmann, Emerich, 116
ultra-fast CT, 228
ultrafast metabolizer (UM), 81
ultra performance liquid chromatography combined with mass spectroscopy (UPLC-MS), 53
See also intravascular ultrasound
for cardiovascular disease, 245
for hypertension, 223
of IMT, 222–44
UM. See ultrafast metabolizer
umbilical cord blood (UCB), 68
CD34+ and, 69
UMSA. See unified maximum separability analysis
unified maximum separability analysis (UMSA), 208
UnitProt, 208
unmet clinical need, 168
UPLC-MS. See ultra performance liquid chromatography combined with mass spectroscopy
ureter, 132
ureteroscopy, 132
uric acid, 180
uridine diphosphate gluturonosyltransferase (UGT), 91
urinary apparatus, 132
US. See ultrasound
validation, of biomarkers, 25
valid biomarkers, 186–9, 194–5, 199
validity, 332
van Meekeren, Rob, 115
varenicline, 352
vascular apparatus, 130–1
vascular cell adhesion molecule-1 (VCAM-1), 69
vascular endothelial growth factor (VEGF), 236, 285–6
vascular endothelial growth factor receptor (VEGFR), 236–7, 238
vascular pathology, 2
vascular smooth muscle cells, 2
vascular stiffness, 221
VBM. See voxel-based morphometry
VCAM-1. See vascular cell adhesion molecule-1
VEGF. See vascular endothelial growth factor
VEGFR. See vascular endothelial growth factor receptor
venoms, 162–3
ventricular premature beats (VPBs), 183
ventrolateral prefrontal cortex (VLPFC), 262
VeraCode, 142, 144
Vesalio, Andrew, 112–13
VGDS. See voluntary genomics data submission
Virchow, Rudolph, 105
vitamin K antagonists, 85
VLA4 antagonists, 8
VLPFC. See ventrolateral prefrontal cortex
volume of distribution, 343
voluntary exploratory data submission
(VXDS), 152
voluntary genomics data submission (VGDS), 152
Voronoy, Yu Yu, 116
voxel-based morphometry (VBM), 258
VPBs. See ventricular premature beats
vulnerable plaque, 105, 106–7, 225
VXDS. See voluntary exploratory data submission
warfarin, 85
wasting, in animal studies, 124
Watanabe rabbit, 229–30
<table>
<thead>
<tr>
<th>Index</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wistar-Kyoto rat, 222–3</td>
<td>xMAP, 142–4</td>
</tr>
<tr>
<td>WM. See working memory</td>
<td>XO. See xanthin oxidase</td>
</tr>
<tr>
<td>Wolfe, John Reissberg, 115</td>
<td>X-ray, 202–5, 242</td>
</tr>
<tr>
<td>working memory (WM), 261–2</td>
<td>ZD1839, 237</td>
</tr>
<tr>
<td>xanthin oxidase (XO), 88</td>
<td>Zerhouni, Elias, 11</td>
</tr>
<tr>
<td>xenobiotics, 299, 301</td>
<td>Zirm, Eduard, 116</td>
</tr>
<tr>
<td>xenotransplant, 118, 119</td>
<td>zoledronate, 56</td>
</tr>
</tbody>
</table>