
1
Introduction

1.1 Presentation

Classical sieve theory is concerned with the problem of the asymptotic
evaluation of averages of arithmetic functions over integers constrained by
congruence restrictions modulo a set of primes. Often the function in question
is the characteristic function of some interesting sequence and the congruence
restrictions are chosen so that those integers remaining after the sieving process
are, for instance, primes or ‘almost’ primes.

If the congruence conditions are phrased as stating that the only integers n

which are allowed are those with reduction modulo a prime p not in a certain
set �p, then a familiar dichotomy arises: if �p contains few residue classes
(typically, a bounded number as p increases), the setting is that of a ‘small’
sieve. The simplest such case is the detection of primes with �p = {0}. If, on
the other hand, the size of �p increases with p, the situation is that of a ‘large’
sieve. The first such sieve was devised by Linnik to investigate the question of
Vinogradov of the size of the smallest quadratic non-residue modulo a prime.

There have already been a number of works extending ‘small’ sieves to more
general situations, where the objects being sifted are not necessarily integers.
One may quote among these the vector sieve of Brüdern and Fouvry [17], with
applications to Lagrange’s theorem with almost prime variables; the ‘crible
étrange’ of Fouvry and Michel [42], with applications to sign changes of
Kloosterman sums, and Poonen’s striking sieve procedure for finding smooth
hypersurfaces of large degree over finite fields [105] (which we describe briefly
in Example 4.11).

Similarly, the large sieve has been extended in some ways, in particular (quite
early on) to deal with sieves in Zd , d � 1, or in number fields (see, e.g. [46]).
Interesting applications have been found, e.g. Duke’s theorem on elliptic curves
over Q with ‘maximal’ p-torsion fields for all p [32]. All these were much of
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2 1 Introduction

the same flavour however, and in particular depended only on the character
theory of finite abelian groups as far as the underlying harmonic analysis was
concerned.

In [80], we introduced a new large sieve inequality to study the average dis-
tribution of Frobenius conjugacy classes in the monodromy groups of a family
(F�) of F�-adic sheaves on a variety over a finite field. Although the spirit of
the large sieve is clearly recognizable, the setting is very different, and the har-
monic analysis involves both non-abelian finite groups and the deep results of
Deligne on the Riemann Hypothesis over finite fields. Our first application of
this new sieve was related to the ‘generic’arithmetic behaviour of the numerator
of the zeta function of a smooth projective curve in a family with large mono-
dromy, improving significantly a result of Chavdarov [22]. (We will survey and
again improve these results in Chapter 8.)

As explained in the preface, while working on devising a general framework
of the sieve that can recover both the classical forms or the version in [80], a
number of new applications emerged. Some of them are in areas of number
theory not usually directly linked to sieve methods, and some in decidedly dif-
ferent contexts. Hence the goal of this book is to present the large sieve as a
general mathematical principle which has potential applications outside num-
ber theory. For this reason, we start from scratch, assuming only a knowledge
of basic linear algebra and properties of finite-dimensional Hilbert spaces to
derive the basic inequality.

Roughly speaking, this inequality states that, given a measure space X with
finite measure, and surjective maps from X to a family (X�) of finite sets, the
measure of the set of those x ∈ X which have image in X� outside some given
sets ��, for finitely many �, can be estimated from above by means of two
quantities. One involves the ‘densities’ of the sets �� in X�, and is independent
of X, while the other (the ‘large sieve constant’) is the norm of a certain bilinear
form which depends on X and X�, but is independent of ��. This form of the
sieve statement is similar to Montgomery’s inequality, and much stronger than
Linnik’s original version (see, e.g. [98], [11], [67, 7.4]).

Obtaining this inequality is really straightforward and is done, in Chapter 2,
in a few pages – the innovation, for what it’s worth, is in working in the general-
ity we consider. This does not by itself prove anything, because the large sieve
constant needs to be estimated before applications can be derived, and the esti-
mation may turn out to be impossible, or trivial. However, the problem turns out
to be further reducible to the study of certain ‘exponential sums’ (or integrals)
over X, which suggests that strong estimates should exist in many situations,
related to the equidistribution of the image of X in X�. This equidistribution
may be expected to be true in many cases, for fixed � at least, but a key issue is
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1.1 Presentation 3

uniformity with respect to �: an explicit form of the error term in the equidistri-
bution is required to proceed. In the classical case, the bilinear form estimate
was first considered by Bombieri and given its most general expression by
Davenport and Halberstam.

This is the time to discuss a thorny terminological issue: this inequality (in
its most refined version) takes the form

∑
r

∣∣∣∣∣
∑

M�n<M+N

ane(nξr)

∣∣∣∣∣
2

� (N − 1 + δ−1)
∑

n

|an|2 (1.1)

for arbitrary complex numbers an and ‘angles’ ξr ∈ R/Z which are δ-spaced
(i.e., such that minn∈Z |ξr − ξs − n| � δ for r �= s). It is often itself called ‘the
large sieve inequality’, although it does not mention any idea of sieve, because
of its link with the proof of Montgomery’s inequality. Correspondingly, when
generalizations of (1.1) were developed for independent reasons (replacing the
characters x 
→ e(xξr) by other functions), they were also called ‘large sieve
inequalities’, even when any link to sieve theory had utterly vanished. And
in fact these inequalities, particularly those involving Fourier coefficients of
automorphic forms of various types, form an important body of work which
has had tremendous applications in analytic number theory, starting with the
work of Iwaniec, and Deshouillers–Iwaniec, and later with variants due to Duke,
Duke–Kowalski, Venkatesh and others. We will not say anything beyond this,
and we refer to [67, Section 7.7] for a short survey with some applications.

After presenting and commenting on the basic framework, the rest of the
book is devoted to the explanation of a number of instances of sieves and the
issues surrounding them. This is done first with the examples of Chapter 4
which present a number of (mostly) classical situations in this context, and
describe some of their applications for convenience. We also indicate there the
relation with the inclusion-exclusion technique in probability and combinator-
ics, which shows in particular that the general sieve bound is sharp, and include
a first new application: an amusing ‘elliptic sieve’ which is related to ques-
tions surrounding the number of prime divisors of the denominators of rational
points on an elliptic curve. In turn, this is linked to the analysis of the prime
factorization of elements of the so-called ‘elliptic divisibility sequences’ first
introduced by M. Ward. We find rather easily that ‘most’ elements have many
prime factors, which complements recent heuristics and results of Silverman,
Everest, Ward and others concerning the paucity of primes and prime powers
in such sequences.

The following chapters are less classical and concern new (or recent)
applications of the sieve ideas, which are quite independent of one another.
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4 1 Introduction

‘Probabilistic’ sieves are discussed briefly in Chapter 6, with an application
to ‘random’ finitely presented groups, and sieving in a discrete finitely gen-
erated group G is described in much more detail in Chapter 7, where some
of the most appealing new results are obtained. Indeed, for symmetric ran-
dom walks on some finitely generated groups, a very transparent treatment of
the large sieve constant is possible, and Property (τ ) (or the expanding prop-
erties of Cayley graphs of quotients of G) appears as a completely natural
tool. When this feature is present, it leads to strong sieve results. Moreover,
very interesting applications arise, including surprising ones in geometry or
topology.

Finally, in Chapter 8, we review and extend the sieve result of [80] con-
cerning the distribution of geometric Frobenius conjugacy classes in finite
monodromy groups over finite fields, and derive some new applications. There
are links here with the case of arithmetic groups, and comparison of the
sieve bounds coming from Property (τ ) in the former case and the Riemann
Hypothesis over finite fields in the latter is quite interesting.

The final part of the book is a series of appendices which review briefly some
of the topics which are probably not known to all readers. This includes a dis-
cussion of small sieves, for purpose of comparison and reference, including a
sample application; a survey of some techniques that are used to prove density
results in matrix groups over finite fields, which are also of independent interest
and involve work of Chavdarov [22] and non-trivial estimates for exponential
sums over finite fields; a survey of representation theory of groups, involving
both the classical theory for finite groups, and what is needed to describe Prop-
erty (T ) and Property (τ ); some estimates for sums of multiplicative functions;
and a short survey of basic topological facts which we use in some of our
applications.

Whenever we treat an example, we give at least all definitions required to
understand the essential parts of the statements, and precise references for any
unproved facts which can not be assumed to be known by every potential reader.
It is expected that most readers will at least once think ‘Everyone knows this!’
when reading some part of the notes, but they may not be able to say this of all
such basic references.

1.2 Some new applications of the large sieve

Before going further, it seems natural to list here a few applications of the
sieve framework we are going to describe. Most of those below are, to the best
of our knowledge, new results, although some of them could well have been
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1.2 Some new applications of the large sieve 5

proven before. We seek concreteness in this list: the precise results will usually
be stronger and more general.

Our first result is in fact obtained from the ‘traditional’ large sieve in one
variable, which we apply in a rather twisted way.

Theorem 1.1 Let E/Q be an elliptic curve with rank r � 1 given by a
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, where ai ∈ Z.

For x ∈ E(Q), let ωE(x) be the number of primes, without multiplicity, dividing
the denominator of the coordinates of x, with ωE(0) = +∞. Let h(x) denote
the canonical height on E.

Then for any fixed real number κ with 0 < κ < 1, we have

|{x ∈ E(Q) | h(x) � T and ωE(x) < κ log log T }|
|{x ∈ E(Q) | h(x) � T }| � (log log T )−1,

for T � 3, where the implied constant depends only on E and κ .

The second statement is an example of the philosophy that random walks on a
set give a way of stating properties of random elements of X, even when there is
no natural probability measure on X. Here X is the set of integers Z, and we use
simple random walks to compensate for the absence of a translation-invariant
probability measure on Z.

Theorem 1.2 Let (Sn) be a simple random walk on Z, i.e.,

Sn = X1 + · · · + Xn

where (Xk) is a sequence of independent random variables with P(Xk = ±1)

= 1/2 for all k.
Let ε > 0 be given, ε � 1/4. For any odd q � 1, any a coprime with q, we

have

P(Sn is prime and ≡ a (mod q)) � 1

ϕ(q)

1

log n

if n � 1, q � n1/4−ε, the implied constant depending only on ε.

This is proved in Chapter 6. It may be expected that results of this type
can be recovered from their ‘deterministic’ analogues using the Central Limit
Theorem. However, this is not likely to be feasible (or wise) when considering
similar questions about random unimodular matrices. In Chapter 7, we prove
the following result using Property (τ ), which confirms that generic elements
of SL(n, Z) have ‘arithmetically generic’ characteristic polynomials:
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6 1 Introduction

Theorem 1.3 Let n � 2 be an integer, let G = SL(n, Z) and let S = S−1 ⊂ G

be a finite generating set of G, e.g., the finite set of elementary matrices with
±1 entries off the diagonal. Let (Xk) be the simple left-invariant random walk
on G, i.e., a sequence of G-valued random variables such that X0 = 1 and

Xk+1 = Xkξk+1 for k � 0,

where (ξk) is a sequence of S-valued independent random variables with

P(ξk = s) = 1

|S| for all s ∈ S.

Then, almost surely, there are only finitely many k for which the characteristic
polynomial det(T − Xk) ∈ Z[T ] does not have the full symmetric group Sn as
Galois group, or in other words, the set of matrices in SL(n, Z) with character-
istic polynomials having small Galois group is transient for the random walk.
In particular, so is the set of those having reducible characteristic polynomial.

In fact (see Theorem 7.4), we will derive this by showing that the probability
that det(T − Xk) be reducible decays exponentially fast with k (in the case
n � 3 at least). The following is a consequence of a similar statement for
symplectic groups, and it answers a question of Maher [96, Question 1.3] (see
Proposition 7.17).

Theorem 1.4 Let g � 1 be an integer, let G be the mapping class group of a
closed surface �g of genus g. Then the set of non-pseudo-Anosov elements in
G is transient for any symmetric random walk on G where the steps are chosen
among a fixed finite symmetric generating set of G.

These two examples of sieves in discrete groups correspond to properties
which are invariant under conjugation. The next result does not have this prop-
erty, showing that the sieve is not limited to this situation. For the sake of
diversity, we state the result somewhat differently in the language of products
of N matrices chosen among the generating set.

Theorem 1.5 Letn � 3 be an integer, letG = SL(n, Z), and letS = S−1 ⊂ G

be a finite symmetric generating set. Then there exists β > 0 such that for any
N � 1, we have

|{w ∈ SN | one entry of the matrix gw is a square}| � |S|N(1−β),

where gw = s1 · · · sN for w = (s1, . . . , sN) ∈ SN , and β and the implied constant
depend only on n and S.
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1.2 Some new applications of the large sieve 7

Finally, here is a sample of what the sieve for Frobenius can do, as described
in Chapter 8. Except for a slightly weaker exponent γ , it could have been proved
easily with the techniques of [80].

Theorem 1.6 Let q be a power of a prime number p � 5, g � 1 an integer
and let f ∈ Fq[T ] be a squarefree polynomial of degree 2g. For t not a zero
of f , let Ct denote the smooth projective model of the hyperelliptic curve

y2 = f (x)(x − t),

and let Jt denote its Jacobian variety. Then we have

|{t ∈ Fq | f (t) �= 0 and |Ct(Fq)| is a square}| � gq1−γ (log q),

|{t ∈ Fq | f (t) �= 0 and |Jt(Fq)| is a square}| � gq1−γ (log q)

where γ = (4g2 + 2g + 4)−1, and the implied constants are absolute.
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2
The principle of the large sieve

2.1 Notation and terminology

We will start by describing a very general type of sieve. The goal is to reach
an analogue of the large sieve inequality, in the sense of a reduction of a sieve
bound to a bilinear form estimate.

We start by introducing the notation and terminology. Many readers, espe-
cially analytic number theorists, may find it excessively formal, but the
framework we describe has so many different incarnations that it seems prefer-
able to be very precise in this book, and to give a name to the objects involved
to refer to them later on. Concrete applications will be able to eschew repro-
ducing all this, by using self-contained statements such as those included in
Section 3.5, which involve none of the newfangled terminology.

Hence, let’s start. First of all, the sieve setting is a triple � = (Y, �, (ρ�))

consisting of

• a set Y ;
• an index set �;
• for all � ∈ �, a surjective map ρ� : Y → Y� where Y� is a finite set.

In combinatorial terms, this might be thought of as a family of colourings of
the set Y . In applications, � will often be a subset of primes (or prime ideals in
some number field), but as first pointed out by Zywina, this is not necessary for
the formal part of setting up the sieve, and although the generality is not really
abstractly greater, it is convenient to allow arbitrary �.

Then, a siftable set associated to � = (Y, �, (ρ�)) is a triple ϒ = (X, µ, F )

consisting of

• a measure space (X, µ) with µ(X) < +∞;
• a map F : X → Y such that the composites X → Y → Y� are measurable,

i.e., the sets {x ∈ X | ρ�(Fx) = y} are measurable for all � and all y ∈ Y�.

8
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2.2 The large sieve inequality 9

The simplest case is when X is a finite set and µ is counting measure. We call
this the counting case. Even when this is not the case, for notational convenience,
we will usually write |B| for the measure µ(B) of a measurable set B ⊂ X.

The last pieces of data are a finite subset L∗ of �, called the prime sieve
support, and a family � = (��) of sieving sets,1 �� ⊂ Y�, defined for � ∈ L∗.

With this final data (�, ϒ, L∗, �), we can define the sieve problem.

Definition 2.1 Let � = (Y, �, (ρ�)) be a sieve setting, ϒ = (X, µ, F ) a
siftable set, L∗ a prime sieve support and � a family of sieving sets. Then the
sifted sets are

S(Y, �; L∗) = {y ∈ Y | ρ�(y) /∈ �� for all � ∈ L∗},
S(X, �; L∗) = {x ∈ X | ρ�(Fx) /∈ �� for all � ∈ L∗}.

The latter is also F −1(S(Y, �; L∗)) and is a measurable subset of X.

The problem we will consider is to find estimates for the measure
|S(X, �; L∗)| of the sifted set. Here we have in mind that the sieve setting
is fixed, while there usually will be an infinite sequence of siftable sets with
size |X| going to infinity; this size will be the main variable in the estimates.

Example 2.2 The classical sieve arises as follows: the sieve setting is

� = (Z, {primes}, Z → Z/�Z)

and the siftable sets are X = {n | M < n � M+N} with counting measure and
Fx = x for x ∈ X. Then the sifted sets become the classical sets of integers in an
interval with reductions modulo primes in L∗ lying outside a subset �� ⊂ Z/�Z
of residue classes.

In most cases, (X, µ) will be a finite set with counting measure, and often
X ⊂ Y with Fx = x for x ∈ X. See Chapter 8 for a conspicuous example where
F is not the identity, Chapter 6 for interesting situations where the measure
space (X, µ) is a probability space, and F a random variable, and Chapter 7 for
another example.

2.2 The large sieve inequality

We will now indicate one type of inequality that reduces the sieve problem to
the estimation of a large sieve constant �. The latter is a more analytic problem,

1 Sometimes, � will also denote a probability space, but no confusion should arise.
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10 2 The principle of the large sieve

and can be attacked in a number of ways. This large sieve constant depends on
most of the data involved, but is independent of the sieving sets.

First we need some more notation. Given a sieve setting�, we letS(�)denote
the set of finite subsets m ⊂ �. In order to simplify notation, since S(�) may be
identified with the set of squarefree integers m � 1 in the classical case where
� is the set of primes, we write � | m for � ∈ m when � ∈ � and m ∈ S(�)

(and similarly for n | m instead of n ⊂ m if n, m ∈ S(�)). Also we sometimes
do not explicitly distinguish between � ∈ � and {�} ∈ S(�).

A sieve support L associated to a prime sieve support L∗ is any (finite) family
of subsets of L. (In general, L will have additional properties, in particular it
will be such that {�} ∈ L for any � ∈ L∗, but it is not necessary to assume this.)

If � is a set of primes, L ‘is’ a set of squarefree integers only divisible by
primes in L∗ (including possibly m = 1, not divisible by any prime).

For m ∈ S(�), let

Ym =
∏
�|m

Y�

and let ρm : Y → Ym be the obvious product map. (In other words, we look at
all ‘refined’ colourings of Y obtained by looking at all possible finite tuples of
colourings.) If m = ∅, Ym is a set with a single element, and ρm is a constant
map. Note that ρm is not surjective in general.

We will consider functions on the various sets Ym, and it will be important
to endow the space of complex-valued functions on Ym with appropriate and
consistent inner products. For this purpose, we assume given for � ∈ � a density

ν� : Y� → [0, 1]

(often denoted simply by ν when no ambiguity is possible) such that the inner
product on functions f : Y� → C is given by

〈f, g〉 =
∑
y∈Y�

ν�(y)f (y)g(y).

We assume that ν(y) > 0 for all y ∈ Y�, in order that this hermitian form
be positive definite (it will be clear that ν(y) � 0 would suffice, with minor
changes, but the stronger assumption is no problem for applications), and that
ν is a probability density, i.e., we have∑

y∈Y�

ν�(y) = 1. (2.1)

We denote by L2(Y�, ν�), or simply L2(Y�), the Hilbert space of functions on
Y� with this inner product.
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